+0

# Help

0
111
1

Solve for $r$: $\frac{r+9}{r-3} = \frac{r-2}{r+5}$

Guest Dec 30, 2017

#1
+6955
+1

$$\frac{r+9}{r-3}\,=\,\frac{r-2}{r+5}$$

Note that  r  cannot be  3  or  -5  since these values cause a zero in the denominator of the original equation. Now multiply both sides of the equation by  r - 3 , and multiply both sides by  r + 5 .

(r + 9)(r + 5)  =  (r - 2)(r - 3)

Multiply out the factors.

r2 + 14r + 45   =   r2 - 5r + 6

Subtract  r2  from both sides of the equation.

14r + 45  =  -5r + 6

19r + 45  =  6

Subtract  45  from both sides.

19r  =  -39

Divide both sides by  19 .

r  =  -39/19

hectictar  Dec 30, 2017
Sort:

#1
+6955
+1

$$\frac{r+9}{r-3}\,=\,\frac{r-2}{r+5}$$

Note that  r  cannot be  3  or  -5  since these values cause a zero in the denominator of the original equation. Now multiply both sides of the equation by  r - 3 , and multiply both sides by  r + 5 .

(r + 9)(r + 5)  =  (r - 2)(r - 3)

Multiply out the factors.

r2 + 14r + 45   =   r2 - 5r + 6

Subtract  r2  from both sides of the equation.

14r + 45  =  -5r + 6

19r + 45  =  6

Subtract  45  from both sides.

19r  =  -39

Divide both sides by  19 .

r  =  -39/19

hectictar  Dec 30, 2017

### 26 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details