+0  
 
0
27
2
avatar

Find the value of \(x\) that satifies the equation \(25^{-2}= \frac{5^{48/x}}{5^{26/x}\cdot 25^{17/x}}\)

 Jan 8, 2019
 #1
avatar
+1

Solve for x over the real numbers:
1/625 = 5^(-12/x)

1/625 = 5^(-12/x) is equivalent to 5^(-12/x) = 1/625:
5^(-12/x) = 1/625

Take reciprocals of both sides:
5^(12/x) = 625

Take the logarithm base 5 of both sides:
12/x = 4

Take the reciprocal of both sides:
x/12 = 1/4

Multiply both sides by 12:

x = 3

 Jan 8, 2019
 #2
avatar+94526 
+1

Here's an approach where logs aren't required

 

25^(-2)  =  (5^2)^(-2) = 5^(-4)

 

25^(17/x)  = (5^2)^(17/x) = 5^(34/ x)

 

So we have

 

5^(-4)   =            5^(48/x)

                    _______________

                     5^(26/x) * 5^(34/x)

 

 

5^ (-4) =     5^(48/x)

                _________

                   5^(60/x)

 

5^(-4)  =  5^(-12/ x)

 

Solve for the exponents

 

-4 =  -12 / x

 

-4x = - 12

 

x = -12 / - 4   =    3

 

 

cool cool cool

 Jan 8, 2019

18 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.