The angle of elevation of the top of a tree is found to be 23° at one point and 76° at a point 49 feet nearer the tree. How high is the tree if both observation points and the base of the tree are on the same horizontal plane?
The angle of elevation of the top of a tree is found to be 23° at one point and 76° at a point 49 feet nearer the tree. How high is the tree if both observation points and the base of the tree are on the same horizontal plane?
\(\begin{array}{rcll} \tan{(23^\circ)} &=& \frac{h}{x} \\ x &=& \frac{h}{ \tan{(23^\circ)}} \\\\ \tan{(76^\circ)} &=& \frac{h}{x-49} \\ \tan{(76^\circ)} &=& \frac{h}{\frac{h}{ \tan{(23^\circ)}}-49} \\ \left( \frac{h}{ \tan{(23^\circ)}}-49 \right)\cdot \tan{(76^\circ)} &=& h\\ h\cdot \frac{\tan{(76^\circ)}} { \tan{(23^\circ)}}-49\cdot \tan{(76^\circ)}&=& h\\ h\cdot \left( \frac{\tan{(76^\circ)}} { \tan{(23^\circ)}} - 1 \right) &=& 49\cdot \tan{(76^\circ)}\\ h\cdot \left( \frac{\tan{(76^\circ)}-\tan{(23^\circ)} } { \tan{(23^\circ)}} \right) &=& 49\cdot \tan{(76^\circ)}\\ h &=& 49\cdot \left( \frac{ \tan{(76^\circ)} \cdot \tan{(23^\circ)} } { \tan{(76^\circ)}-\tan{(23^\circ)} } \right) \\ h &=& 49\cdot \left( \frac{4.01078093354 \cdot 0.42447481621 } { 4.01078093354-0.42447481621 } \right) \\ h &=& 49\cdot \left( \frac{1.70247549962 } { 3.58630611733 } \right) \\ h &=& 49\cdot 0.47471561097 \\ h &=& 23.2610649376\ \text{feet} \\ \end{array}\)
The tree is 23.2610649376 feet high
The angle of elevation of the top of a tree is found to be 23° at one point and 76° at a point 49 feet nearer the tree. How high is the tree if both observation points and the base of the tree are on the same horizontal plane?
\(\begin{array}{rcll} \tan{(23^\circ)} &=& \frac{h}{x} \\ x &=& \frac{h}{ \tan{(23^\circ)}} \\\\ \tan{(76^\circ)} &=& \frac{h}{x-49} \\ \tan{(76^\circ)} &=& \frac{h}{\frac{h}{ \tan{(23^\circ)}}-49} \\ \left( \frac{h}{ \tan{(23^\circ)}}-49 \right)\cdot \tan{(76^\circ)} &=& h\\ h\cdot \frac{\tan{(76^\circ)}} { \tan{(23^\circ)}}-49\cdot \tan{(76^\circ)}&=& h\\ h\cdot \left( \frac{\tan{(76^\circ)}} { \tan{(23^\circ)}} - 1 \right) &=& 49\cdot \tan{(76^\circ)}\\ h\cdot \left( \frac{\tan{(76^\circ)}-\tan{(23^\circ)} } { \tan{(23^\circ)}} \right) &=& 49\cdot \tan{(76^\circ)}\\ h &=& 49\cdot \left( \frac{ \tan{(76^\circ)} \cdot \tan{(23^\circ)} } { \tan{(76^\circ)}-\tan{(23^\circ)} } \right) \\ h &=& 49\cdot \left( \frac{4.01078093354 \cdot 0.42447481621 } { 4.01078093354-0.42447481621 } \right) \\ h &=& 49\cdot \left( \frac{1.70247549962 } { 3.58630611733 } \right) \\ h &=& 49\cdot 0.47471561097 \\ h &=& 23.2610649376\ \text{feet} \\ \end{array}\)
The tree is 23.2610649376 feet high