If $n \equiv 2 \pmod{7}$, then find the remainder when $(n + 2)(n + 4)(n + 6)$ is divided by 7.
If n≡2(mod7), then find the remainder when (n+2)(n+4)(n+6) is divided by 7.
(n+2)(n+4)(n+6)(mod7)≡(2+2)(2+4)(2+6)(mod7)≡4∗6∗8(mod7)≡192(mod7)≡3(mod7)