If $n \equiv 2 \pmod{7}$, then find the remainder when $(n + 2)(n + 4)(n + 6)$ is divided by 7.
If \(n \equiv 2 \pmod{7}\),
then find the remainder when
\((n + 2)(n + 4)(n + 6)\) is divided by \(7\).
\(\begin{array}{|rcll|} \hline \mathbf{(n + 2)(n + 4)(n + 6) \pmod{7}} &\equiv& (2 + 2)(2 + 4)(2 + 6) \pmod{7} \\ &\equiv& 4*6*8 \pmod{7} \\ &\equiv& 192 \pmod{7} \\ &\equiv& {\color{red}3} \pmod{7} \\ \hline \end{array}\)