The graph of the line $x+y=b$ is a perpendicular bisector of the line segment from $(1,3)$ to $(5,7)$. What is the value of b?
The graph of the line $x+y=b$ is a perpendicular bisector of the line segment from $(1,3)$ to $(5,7)$.
What is the value of b?
\(\begin{array}{|lrcll|} \hline & \vec{x} &=& \dbinom{ \frac{1+5}{2} } { \frac{3+7}{2} } + \lambda \binom{ -(7-3) } {5-1 }\\ & &=& \dbinom{3} { 5 } + \lambda \binom{ -4 } { 4 }\\ & \dbinom{x}{y} &=& \dbinom{3-4\lambda}{5+4\lambda} \\\\ (1) & x &=& 3-4\lambda \\ (2) & y &=& 5+4\lambda \\\\ (1)+(2): & x+y &=& 3-4\lambda +5+4\lambda \\ & x+y &=& 3 +5 \\ & x+y &=& 8 \quad & | \quad x+y=b\\ & &&& | \quad \mathbf{b = 8} \\ \hline \end{array}\)
The midpoint of this segment is ( 3, 5)
And the slope between the two segment endpoints is [7 - 3] / [ 5 - 1] = 4/4 = 1
So.......the perpedicular bisector will have a negative reciprocal slope = -1
And the equation of this bisector is given by :
y = -1(x - 3) + 5
y = -x + 3 + 5
y = -x + 8
So
x + y = 8
And "b" = 8