+0  
 
+1
347
2
avatar+605 

The graph of the line $x+y=b$ is a perpendicular bisector of the line segment from $(1,3)$ to $(5,7)$. What is the value of b?

gueesstt  May 4, 2018
 #1
avatar+20153 
+2

The graph of the line $x+y=b$ is a perpendicular bisector of the line segment from $(1,3)$ to $(5,7)$.

What is the value of b?

 

\(\begin{array}{|lrcll|} \hline & \vec{x} &=& \dbinom{ \frac{1+5}{2} } { \frac{3+7}{2} } + \lambda \binom{ -(7-3) } {5-1 }\\ & &=& \dbinom{3} { 5 } + \lambda \binom{ -4 } { 4 }\\ & \dbinom{x}{y} &=& \dbinom{3-4\lambda}{5+4\lambda} \\\\ (1) & x &=& 3-4\lambda \\ (2) & y &=& 5+4\lambda \\\\ (1)+(2): & x+y &=& 3-4\lambda +5+4\lambda \\ & x+y &=& 3 +5 \\ & x+y &=& 8 \quad & | \quad x+y=b\\ & &&& | \quad \mathbf{b = 8} \\ \hline \end{array}\)

 

 

laugh

heureka  May 4, 2018
 #2
avatar+91148 
+3

The midpoint  of this segment is  ( 3, 5)

And the slope between the two segment endpoints  is  [7 - 3] / [ 5 - 1]   = 4/4  = 1

 

So.......the perpedicular bisector  will have a negative reciprocal slope  = -1

 

And the equation of this bisector is given  by :

 

y = -1(x - 3) + 5

 

y = -x + 3 + 5

 

y = -x + 8

 

So

 

x + y  =  8     

 

And  "b"  =  8

 

 

 

cool cool cool

CPhill  May 4, 2018

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.