+0  
 
+1
66
2
avatar+604 

The graph of the line $x+y=b$ is a perpendicular bisector of the line segment from $(1,3)$ to $(5,7)$. What is the value of b?

gueesstt  May 4, 2018
Sort: 

2+0 Answers

 #1
avatar+19344 
+2

The graph of the line $x+y=b$ is a perpendicular bisector of the line segment from $(1,3)$ to $(5,7)$.

What is the value of b?

 

\(\begin{array}{|lrcll|} \hline & \vec{x} &=& \dbinom{ \frac{1+5}{2} } { \frac{3+7}{2} } + \lambda \binom{ -(7-3) } {5-1 }\\ & &=& \dbinom{3} { 5 } + \lambda \binom{ -4 } { 4 }\\ & \dbinom{x}{y} &=& \dbinom{3-4\lambda}{5+4\lambda} \\\\ (1) & x &=& 3-4\lambda \\ (2) & y &=& 5+4\lambda \\\\ (1)+(2): & x+y &=& 3-4\lambda +5+4\lambda \\ & x+y &=& 3 +5 \\ & x+y &=& 8 \quad & | \quad x+y=b\\ & &&& | \quad \mathbf{b = 8} \\ \hline \end{array}\)

 

 

laugh

heureka  May 4, 2018
 #2
avatar+86528 
+2

The midpoint  of this segment is  ( 3, 5)

And the slope between the two segment endpoints  is  [7 - 3] / [ 5 - 1]   = 4/4  = 1

 

So.......the perpedicular bisector  will have a negative reciprocal slope  = -1

 

And the equation of this bisector is given  by :

 

y = -1(x - 3) + 5

 

y = -x + 3 + 5

 

y = -x + 8

 

So

 

x + y  =  8     

 

And  "b"  =  8

 

 

 

cool cool cool

CPhill  May 4, 2018

19 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy