Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
685
4
avatar

Find all solutions to 3x+573x57=36.

 Apr 14, 2019

Best Answer 

 #2
avatar+26396 
+3

Find all solutions to

3x+573x57=36.

 

3x+573x57=36(3x+573x57)3=6(x+57)33(x+57)2(x57)+33(x+57)(x57)2(x57)=611433(x+57)2(x57)+33(x+57)(x57)2=610833(x+57)2(x57)+33(x+57)(x57)2=0|:3363(x+57)2(x57)+3(x+57)(x57)2=0363(x2572)(x+57)+3(x2572)(x57)=0363x2572(3x+573x57)=36=03x257236=36(x2572)6=363x2572=7776x2=7776+3249x2=11025x=±105

 

check x=105:

3105+57310557?=363162348?=1.817120592835.451361778503.63424118566?=1.817120592831.81712059283=1.81712059283

 

 

check x=105:

3105+57310557?=363483162?=1.817120592833.63424118566(5.45136177850)?=1.817120592833.63424118566+5.45136177850?=1.817120592831.81712059283=1.81712059283

 

laugh

 Apr 15, 2019
edited by heureka  Apr 16, 2019
 #1
avatar+130466 
+1

WolframAlpha shows a solution of x = 105

 

Maybe a substitution could solve this??? [ But.....I'm not sure ]

 

Anyone know an algebraic solution  ????

 

cool cool cool

 Apr 14, 2019
 #2
avatar+26396 
+3
Best Answer

Find all solutions to

3x+573x57=36.

 

3x+573x57=36(3x+573x57)3=6(x+57)33(x+57)2(x57)+33(x+57)(x57)2(x57)=611433(x+57)2(x57)+33(x+57)(x57)2=610833(x+57)2(x57)+33(x+57)(x57)2=0|:3363(x+57)2(x57)+3(x+57)(x57)2=0363(x2572)(x+57)+3(x2572)(x57)=0363x2572(3x+573x57)=36=03x257236=36(x2572)6=363x2572=7776x2=7776+3249x2=11025x=±105

 

check x=105:

3105+57310557?=363162348?=1.817120592835.451361778503.63424118566?=1.817120592831.81712059283=1.81712059283

 

 

check x=105:

3105+57310557?=363483162?=1.817120592833.63424118566(5.45136177850)?=1.817120592833.63424118566+5.45136177850?=1.817120592831.81712059283=1.81712059283

 

laugh

heureka Apr 15, 2019
edited by heureka  Apr 16, 2019
 #3
avatar+130466 
+3

Wow!!!!....that's impressive, Heureka!!!

 

Definitely one for my "Watchlist"

 

cool cool cool

CPhill  Apr 15, 2019
 #4
avatar+26396 
+3

Thank you, CPhill !

 

laugh

heureka  Apr 16, 2019

0 Online Users