We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
159
4
avatar

Find all solutions to \(\sqrt[3]{x + 57} - \sqrt[3]{x - 57} = \sqrt[3]{6}.\)

 Apr 14, 2019

Best Answer 

 #2
avatar+23273 
+3

Find all solutions to

\(\large \sqrt[3]{x + 57} - \sqrt[3]{x - 57} = \sqrt[3]{6}\).

 

\(\begin{array}{|rcll|} \hline \sqrt[3]{x + 57} - \sqrt[3]{x - 57} &=& \sqrt[3]{6} \\ \left( \sqrt[3]{x + 57} - \sqrt[3]{x - 57} \right)^3 &=& 6 \\ (x + 57)-3 \sqrt[3]{(x + 57)^2(x - 57)} + 3 \sqrt[3]{(x + 57)(x - 57)^2}-(x-57) &=& 6 \\ 114-3 \sqrt[3]{(x + 57)^2(x - 57)} + 3 \sqrt[3]{(x + 57)(x - 57)^2} &=& 6 \\ 108-3 \sqrt[3]{(x + 57)^2(x - 57)} + 3 \sqrt[3]{(x + 57)(x - 57)^2} &=& 0 \quad | \quad : 3\\ 36- \sqrt[3]{(x + 57)^2(x - 57)} + \sqrt[3]{(x + 57)(x - 57)^2} &=& 0 \\ 36- \sqrt[3]{(x^2 - 57^2)(x + 57)} + \sqrt[3]{(x^2 - 57^2)(x - 57)} &=& 0 \\ 36- \sqrt[3]{x^2 - 57^2} \underbrace{\left(\sqrt[3]{x + 57} - \sqrt[3]{x - 57}\right)}_{=\sqrt[3]{6}} &=& 0 \\ \sqrt[3]{x^2 - 57^2}\sqrt[3]{6} &=& 36 \\ (x^2 - 57^2)\cdot 6 &=& 36^3 \\ x^2 - 57^2 &=& 7776 \\ x^2 &=& 7776 +3249 \\ x^2 &=& 11025 \\ \mathbf{x} &\mathbf{=}& \mathbf{\pm 105} \\ \hline \end{array}\)

 

check \(x=105\):

\(\begin{array}{rcll} \sqrt[3]{105 + 57} - \sqrt[3]{105 - 57} &\overset{?}{=}& \sqrt[3]{6} \\ \sqrt[3]{162} - \sqrt[3]{48} &\overset{?}{=}& 1.81712059283 \\ 5.45136177850 - 3.63424118566 &\overset{?}{=}& 1.81712059283 \\ 1.81712059283 & = & 1.81712059283 \quad \checkmark \\ \end{array}\)

 

 

check \(x=-105\):

\(\begin{array}{rcll} \sqrt[3]{-105 + 57} - \sqrt[3]{-105 - 57} &\overset{?}{=}& \sqrt[3]{6} \\ \sqrt[3]{-48} - \sqrt[3]{-162} &\overset{?}{=}& 1.81712059283 \\ - 3.63424118566 -(-5.45136177850 ) &\overset{?}{=}& 1.81712059283 \\ - 3.63424118566 + 5.45136177850 &\overset{?}{=}& 1.81712059283 \\ 1.81712059283 & = & 1.81712059283 \quad \checkmark \\ \end{array}\)

 

laugh

 Apr 15, 2019
edited by heureka  Apr 16, 2019
 #1
avatar+104652 
+1

WolframAlpha shows a solution of x = 105

 

Maybe a substitution could solve this??? [ But.....I'm not sure ]

 

Anyone know an algebraic solution  ????

 

cool cool cool

 Apr 14, 2019
 #2
avatar+23273 
+3
Best Answer

Find all solutions to

\(\large \sqrt[3]{x + 57} - \sqrt[3]{x - 57} = \sqrt[3]{6}\).

 

\(\begin{array}{|rcll|} \hline \sqrt[3]{x + 57} - \sqrt[3]{x - 57} &=& \sqrt[3]{6} \\ \left( \sqrt[3]{x + 57} - \sqrt[3]{x - 57} \right)^3 &=& 6 \\ (x + 57)-3 \sqrt[3]{(x + 57)^2(x - 57)} + 3 \sqrt[3]{(x + 57)(x - 57)^2}-(x-57) &=& 6 \\ 114-3 \sqrt[3]{(x + 57)^2(x - 57)} + 3 \sqrt[3]{(x + 57)(x - 57)^2} &=& 6 \\ 108-3 \sqrt[3]{(x + 57)^2(x - 57)} + 3 \sqrt[3]{(x + 57)(x - 57)^2} &=& 0 \quad | \quad : 3\\ 36- \sqrt[3]{(x + 57)^2(x - 57)} + \sqrt[3]{(x + 57)(x - 57)^2} &=& 0 \\ 36- \sqrt[3]{(x^2 - 57^2)(x + 57)} + \sqrt[3]{(x^2 - 57^2)(x - 57)} &=& 0 \\ 36- \sqrt[3]{x^2 - 57^2} \underbrace{\left(\sqrt[3]{x + 57} - \sqrt[3]{x - 57}\right)}_{=\sqrt[3]{6}} &=& 0 \\ \sqrt[3]{x^2 - 57^2}\sqrt[3]{6} &=& 36 \\ (x^2 - 57^2)\cdot 6 &=& 36^3 \\ x^2 - 57^2 &=& 7776 \\ x^2 &=& 7776 +3249 \\ x^2 &=& 11025 \\ \mathbf{x} &\mathbf{=}& \mathbf{\pm 105} \\ \hline \end{array}\)

 

check \(x=105\):

\(\begin{array}{rcll} \sqrt[3]{105 + 57} - \sqrt[3]{105 - 57} &\overset{?}{=}& \sqrt[3]{6} \\ \sqrt[3]{162} - \sqrt[3]{48} &\overset{?}{=}& 1.81712059283 \\ 5.45136177850 - 3.63424118566 &\overset{?}{=}& 1.81712059283 \\ 1.81712059283 & = & 1.81712059283 \quad \checkmark \\ \end{array}\)

 

 

check \(x=-105\):

\(\begin{array}{rcll} \sqrt[3]{-105 + 57} - \sqrt[3]{-105 - 57} &\overset{?}{=}& \sqrt[3]{6} \\ \sqrt[3]{-48} - \sqrt[3]{-162} &\overset{?}{=}& 1.81712059283 \\ - 3.63424118566 -(-5.45136177850 ) &\overset{?}{=}& 1.81712059283 \\ - 3.63424118566 + 5.45136177850 &\overset{?}{=}& 1.81712059283 \\ 1.81712059283 & = & 1.81712059283 \quad \checkmark \\ \end{array}\)

 

laugh

heureka Apr 15, 2019
edited by heureka  Apr 16, 2019
 #3
avatar+104652 
+3

Wow!!!!....that's impressive, Heureka!!!

 

Definitely one for my "Watchlist"

 

cool cool cool

CPhill  Apr 15, 2019
 #4
avatar+23273 
+3

Thank you, CPhill !

 

laugh

heureka  Apr 16, 2019

28 Online Users

avatar