+0  
 
-1
24
1
avatar+418 

Five balls are numbered with the integers 1 through 5 and placed in a jar. Three are drawn without replacement. What is the probability that the sum of the three integers on the balls is odd? Express your answer as a common fraction.

Logic  Nov 2, 2018

Best Answer 

 #1
avatar+2729 
+1

The balls can sum to odd if they are

 

(o, o, o), (o, e, e)

 

There is only 1 way to choose (o,o,o), i.e. (1,3,5)

There are 3 ways to choose (o,e,e), both the two even numbers, 2 and 4, and one of the odd numbers.

 

Thus there are 4 total ways 3 balls can sum to an odd number.

 

There are \(\dbinom{5}{3} = 10\) total ways to select 3 balls from the 5.  Thus

 

\(P[\text{choose 3 balls that sum to an odd number}]=\dfrac{4}{10}=\dfrac 2 5\)

Rom  Nov 3, 2018
 #1
avatar+2729 
+1
Best Answer

The balls can sum to odd if they are

 

(o, o, o), (o, e, e)

 

There is only 1 way to choose (o,o,o), i.e. (1,3,5)

There are 3 ways to choose (o,e,e), both the two even numbers, 2 and 4, and one of the odd numbers.

 

Thus there are 4 total ways 3 balls can sum to an odd number.

 

There are \(\dbinom{5}{3} = 10\) total ways to select 3 balls from the 5.  Thus

 

\(P[\text{choose 3 balls that sum to an odd number}]=\dfrac{4}{10}=\dfrac 2 5\)

Rom  Nov 3, 2018

33 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.