Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
-2
2423
7
avatar+73 

1. Find the number of ordered pairs (a,b) of integers such that a+2a+5=b3

 

2. Find all complex numbers z such that z4=4
Note: All solutions should be expressed in the form a+bi, where a and b are real numbers.
 

 May 6, 2020
 #1
avatar
-2

1. There is only one solution: (a,b) = (4,2).

 

2.  By Hamilton's Theorem, the solutions are z = 4^{1/4}*e^(pi*i/4), 4^{1/4}*e^(pi*i/4 + pi/4), 4^{1/4}*e^(pi*i/4 + 2*pi/4), and 4^{1/4}*e^(pi*i/4 + 3*pi/4).  Since 4^{1/4} = sqrt(2) and e^(pi*i/4) = (1 + i)/sqrt(2), the first solution is 1 + i.  Then the other roots work out as

 

4^{1/4}*e^(pi*i/4 + pi/4) = 1 - i,

4^{1/4}*e^(pi*i/4 + 2*pi/4) = -1 - i, and

4^{1/4}*e^(pi*i/4 + 3*pi/4) = -1 + i.

 May 6, 2020
 #2
avatar+73 
0

im confused how you solved the second one

jellybeans207  May 6, 2020
 #3
avatar+73 
0

also your anwser for the first question is wrong :(

jellybeans207  May 6, 2020
 #4
avatar+118696 
0

Jelly beans,

Please just ask one question per post.

 May 6, 2020
 #5
avatar+26396 
+6

1.

Find the number of ordered pairs (a,b) of integers such that a+2a+5=b3

 

a+2a+5=b33(a+2)=b(a+5)3a+6=ab+5b3a+5b+ab=63a+5b+ab+(35)=(35)+63a+5b+ab15=15+6(a+5)(b3)=9mn=9find all integer products  mn=9,where m=a+5,  and  n=b3

 

all integer products

mnmna=m5b=n+39=1×919469=1×9196129=3×333209=3×333869=9×191429=9×191144

 

There are 6 integer products.
The number of ordered pairs (a,b) are 6.
(4,6), (6,12), (2,0), (8,6), (4,2), (14,4)

 

laugh

 May 6, 2020
 #6
avatar+73 
-4

its still wrong :(

jellybeans207  May 6, 2020
 #7
avatar+73 
0

oh wait no its right, im so sorry. btw i really liked the way you explained it, i understand now! :)

jellybeans207  May 6, 2020

2 Online Users

avatar