+0  
 
0
42
2
avatar

Find the only real number that can be expressed in the form (a + bi)^3 - 107i, where i^2 = -1, and a and b are positive integers.

 Jan 30, 2019

Best Answer 

 #1
avatar+3885 
+2

\((a+i b)^3 - 107i = (a^3-3 a b^2) + i(3 a^2 b - b^3-107)\\ \text{If this is to be real, then}\\ 3 a^2 b - b^3-107 = 0\\ (3a^2-b^2)b = 107 \)

 

\(\text{the only factors of 107 are }1,~107 \text{ so either}\\ b=1,~(3a^2-b^2)=107 \text{ or }b=107,~(3a^2 - b^2)=1\)

 

\(\text{If the first}\\ (3a^2 - b^2) = 3a^2 - 1=107\\ 3a^2 = 108\\ a^2 = 36\\ a=\pm 6\)

 

\(\text{If the second}\\ (3a^2 - b^2) = 3a^2 - 107^2 = 1\\ 3a^2 = 1 + 107^2 = 11450\\ a^2 = \dfrac{11450}{3}\\ \text{and this doesn't lead to }a \text{ being an integer}\)

 

\(\text{So our solution is}\\ r = (6+i)\\ (6+i)^3-107i = 198\)

.
 Jan 30, 2019
 #1
avatar+3885 
+2
Best Answer

\((a+i b)^3 - 107i = (a^3-3 a b^2) + i(3 a^2 b - b^3-107)\\ \text{If this is to be real, then}\\ 3 a^2 b - b^3-107 = 0\\ (3a^2-b^2)b = 107 \)

 

\(\text{the only factors of 107 are }1,~107 \text{ so either}\\ b=1,~(3a^2-b^2)=107 \text{ or }b=107,~(3a^2 - b^2)=1\)

 

\(\text{If the first}\\ (3a^2 - b^2) = 3a^2 - 1=107\\ 3a^2 = 108\\ a^2 = 36\\ a=\pm 6\)

 

\(\text{If the second}\\ (3a^2 - b^2) = 3a^2 - 107^2 = 1\\ 3a^2 = 1 + 107^2 = 11450\\ a^2 = \dfrac{11450}{3}\\ \text{and this doesn't lead to }a \text{ being an integer}\)

 

\(\text{So our solution is}\\ r = (6+i)\\ (6+i)^3-107i = 198\)

Rom Jan 30, 2019
 #2
avatar+95866 
0

Nicely done, Rom.....!!!!

 

 

cool cool cool

CPhill  Jan 30, 2019

13 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.