+0  
 
0
83
2
avatar

A function $f$ has a horizontal asymptote of $y = -4,$ a vertical asymptote of $x = 3,$ and an $x$-intercept at $(1,0).$  Part (a): Let $f$ be of the form $$f(x) = \frac{ax+b}{x+c}.$$Find an expression for $f(x).$  Part (b): Let $f$ be of the form $$f(x) = \frac{rx+s}{2x+t}.$$Find an expression for $f(x).$

Guest Mar 9, 2018
 #1
avatar+87333 
+1

 ax + b

_____

  x + c

 

If the vertical asymptote is at x = 3 then c  = -3

If the horizontal asymptote is at   y   = - 4, then a  =  -4

If (1,0)  is an x intercept then we can solve this for b

-4(1) + b  = 0

b  = 4

 

So.....the function is

 

y  =  -4x + 4

       ______

          x - 3

 

Here's the graph  :  https://www.desmos.com/calculator/t5wbj4l2ad

 

 

cool cool cool

CPhill  Mar 9, 2018
 #2
avatar+87333 
+1

Second one :

 

y  =  rx + s

       _____

        2x + t

 

Vertical asymptote  ⇒    x  = 3

2(3) + t  = 0

6 + t   = 0

t  =  -6

 

Horizontal asymptote ⇒  y  = -4

So     r/2 =  - 4  ⇒   r  = -8

 

And if  (1,0)  is the x intercept....we have that

-8(1) + s  =  0

s  = 8

 

And the function is  :

 

y  =    -8x + 8

         ________

          2x - 6

 

Here's the graph : https://www.desmos.com/calculator/bqxafolfmx

 

 

cool cool cool

CPhill  Mar 9, 2018

4 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.