We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
164
2
avatar+1206 

Determine the complex number satisfying the equation \(3z + 4i \overline{z} = 1 - 8\)i.

 Apr 14, 2019
 #1
avatar+104652 
+1

3z  +4i (z conjugate) = 1 - 81

 

3 ( a + bi)  - 4 i ( a - bi)  = 1 - 8i

 

3a + 3bi  - 4a i - 4b  = 1 - 8i

 

(3a - 4b) + (3b - 4a) i  = 1 - 8i

 

Equate coefficients  on real , imaginary parts

 

3a - 4b  = 1       ⇒  12a - 16b  = 4   

-4a + 3b  = - 8  ⇒  -12a + 9b  = -24          add the last two equations

 

-7 b = - 20      ⇒  b = 20/7

 

And 

3a - 4(20/7)  = 1

3a - 80/7 = 7/7

3a  = 87/7

a = 87/21  = 29/7

 

So

 

z   =    29/7  + (20/7) i

 

 

cool cool cool

 Apr 14, 2019
 #2
avatar+1206 
0

Sorry, but this is incorrect!

 Apr 14, 2019

22 Online Users

avatar