+0

# help

0
110
2

Let $$\omega$$ be a complex number such that $$\omega^5 = 1$$ and $$\omega \neq 1$$. Compute $$\frac{\omega}{1 - \omega^2} + \frac{\omega^2}{1 - \omega^4} + \frac{\omega^3}{1 - \omega} + \frac{\omega^4}{1 - \omega^3}$$

Jan 10, 2020

#1
+108771
+1

$$\theta=\frac{2\pi}{5}$$

$$w=e^{(2k\pi/5)i}\qquad k=1,2,3,4$$

That is a start.

Jan 10, 2020
#2
+24422
+1

Let $$\omega$$ be a complex number such that $$\omega^5 = 1$$ and $$\omega \neq 1$$.

Compute $$\dfrac{\omega}{1 - \omega^2} + \dfrac{\omega^2}{1 - \omega^4} + \dfrac{\omega^3}{1 - \omega} + \dfrac{\omega^4}{1 - \omega^3}$$

$$\begin{array}{|rcll|} \hline && \mathbf{ \dfrac{\omega}{1 - \omega^2} + \dfrac{\omega^2}{1 - \omega^4} + \dfrac{\omega^3}{1 - \omega} + \dfrac{\omega^4}{1 - \omega^3} } \quad &| \quad \omega^4 = \dfrac{\omega^5}{\omega}=\dfrac{1}{\omega} \\\\ &=& \dfrac{\omega}{1 - \omega^2} + \dfrac{\omega^2}{1 - \dfrac{1}{\omega}} + \dfrac{\omega^3}{1 - \omega} + \dfrac{\omega^4}{1 - \omega^3} \\\\ &=& \dfrac{\omega}{1 - \omega^2} + \dfrac{\omega^2}{\dfrac{\omega-1}{\omega}} + \dfrac{\omega^3}{1 - \omega} + \dfrac{\omega^4}{1 - \omega^3} \\\\ &=& \dfrac{\omega}{1 - \omega^2} - \dfrac{\omega^3}{1 - \omega} + \dfrac{\omega^3}{1 - \omega} + \dfrac{\omega^4}{1 - \omega^3} \\\\ &=& \dfrac{\omega}{1 - \omega^2} + \dfrac{\omega^4}{1 - \omega^3} \quad &| \quad \omega^3 = \dfrac{\omega^5}{\omega^2}=\dfrac{1}{\omega^2} \\\\ &=& \dfrac{\omega}{1 - \omega^2} + \dfrac{\omega^4}{1 - \dfrac{1}{\omega^2}} \\\\ &=& \dfrac{\omega}{1 - \omega^2} + \dfrac{\omega^4}{\dfrac{\omega^2-1}{\omega^2}} \\\\ &=& \dfrac{\omega}{1 - \omega^2} - \dfrac{\omega^6}{1 - \omega^2} \quad | \quad \omega^6 = \omega^5 \omega=\omega \\\\ &=& \dfrac{\omega}{1 - \omega^2} - \dfrac{\omega}{1 - \omega^2} \\\\ &=& \mathbf{0} \\ \hline \end{array}$$

Jan 10, 2020
edited by heureka  Jan 10, 2020
edited by heureka  Jan 10, 2020