Four points are chosen at random on the surface of a sphere. What is the probability that the center of the sphere lies inside the tetrahedron whose vertices are at the four points? (It is understood that each point is independently chosen relative to a uniform distribution on the sphere.)

Guest Jun 5, 2018

Method 1: Logic


One the sphere, there exists a point A and its antipodal point, A'. This means that A' is the point with the farthest distance from A, the 3D version of the diameter, which means when you connect A and A', the line contains the center of the sphere. After one chooses the three points, W, X, Y, the region to place Z is the spherical traingle W'X'Y' opposite WXY. It is only then, the tetrahedron would contain the center of the sphere. This means that the probability the tetrahedron would contain the center of the sphere is the expected area of the triangle W'X'Y', which has the same expected area of WXY and 7 other triangles: WXY, W'XY, W'X'Y, W'X'Y', WX'Y, WX'Y', WXY', W'XY'. Since there are 8 such triangle, and the total area is set 1, the expected area is 1/8.  The probabilty is 1/8. 


Method 2: Mathematical Proof


We can proof the logic using the notion of barycentric coordidates: https://nicoguaro.github.io/posts/putnam_prob/ 


I think the website does a great job explaining the process, better than I can at least. If you have any questions though, about the website or my logic, ask away!


I hope this helped,



GYanggg  Jun 5, 2018
edited by GYanggg  Jun 5, 2018

7 Online Users


New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.