We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
157
1
avatar

The solutions to $4x^2 + 3 = 3x - 9$ can be written in the form $x = a \pm b i,$ where $a$ and $b$ are real numbers. What is $a + b^2$? Express your answer as a fraction.

 Jun 25, 2019
 #1
avatar+8810 
+4

The solutions to  \(4x^2 + 3 = 3x - 9\)  can be written in the form  \(x = a \pm b i,\)  where  \(a\)  and  \(b\)  are real numbers. What is  \(a + b^2\) ?  Express your answer as a fraction.

 

----------

 

\(4x^2 + 3 = 3x - 9\)

                                        Subtract  3x  from both sides and add  9  to both sides of the equation.

\(4x^2-3x + 12 = 0\)

                                        Now we can use the quadratic formula to solve for  x

 

\(x\ = \ \frac{3\pm\sqrt{3^2-4(4)(12)}}{2(4)}\ =\ \frac{3\pm\sqrt{-183}}{8}\ =\ \frac{3\pm\sqrt{183}i}{8}\ =\ \frac38\pm\frac{\sqrt{183}}{8}i\)

 

And now we have the solutions in the form   \(x = a \pm b i\)   so we can see...

 

\(a+b^2\ =\ \Big(\frac38\Big)+\Big(\frac{\sqrt{183}}{8}\Big)^2\ =\ \frac38+\frac{183}{64}\ =\ \frac{24}{64}+\frac{183}{64}\ =\ \frac{207}{64}\)_

 Jun 25, 2019

21 Online Users

avatar
avatar