+0  
 
0
32
2
avatar+1012 

Help.

NotSoSmart  Nov 2, 2017
Sort: 

2+0 Answers

 #1
avatar+634 
+2

Since the standard form of a quadratic is y=a(x-a)2+b, we can plug in the vertex.

\(y=a(x+4)^2+7\)

To find a, plug in the point it passes through.

\(8=a(-3+4)^2+7\)

Simplify.

\(8=a(1)+7\)

\(8=a+7\)

\(1=a\)

 

So, the formula is \(y=(x+4)^2+7\).

AdamTaurus  Nov 2, 2017
 #2
avatar+78643 
+2

Good job, AT

 

Here's the second one

 

y = -2x^2  + 32x - 12

 

The x coordinate of the vertex is    -32 / [ 2 ( -2 ) ]  =  -32 / -4  = 8

 

Since the first term is negative, this parabola turns downward, so we have a max at

 

-2 * 8^2  + 32 (8) - 12  =     -128 + 256 - 12 = 116

 

So...no y value can be > 116..so the range is   y ≤ 116 

 

 

 

cool cool cool

CPhill  Nov 2, 2017

8 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details