We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
49
1
avatar

Find the minimum value of \(\frac{(x + y)^3}{x^2 y}\), where x and y are positive real numbers.

 Nov 12, 2019
 #1
avatar+23575 
+2

Find the minimum value of \(\dfrac{(x + y)^3}{x^2 y}\), where x and y are positive real numbers.

 

\(\begin{array}{|rcll|} \hline \mathbf{f(x,y)} & \mathbf{=} & \mathbf{\dfrac{(x + y)^3}{x^2 y} } \\\\ \dfrac{\partial f(x,y)} {\partial x} &=& \dfrac{(x + y)^3}{x^2 y}\left( \dfrac{3(x+y)^3}{(x+y)^3} - \dfrac{2xy}{x^2y} \right) \\ &=& \dfrac{(x + y)^3}{x^2 y}\left( \dfrac{3}{x+y} - \dfrac{2}{x} \right) \\ 0 &=& \dfrac{(x + y)^3}{x^2 y}\left( \dfrac{3}{x+y} - \dfrac{2}{x} \right) \\ \dfrac{3}{x+y} - \dfrac{2}{x} &=& 0 \\ \dfrac{3}{x+y} &=& \dfrac{2}{x} \\ \dfrac{x+y}{3} &=& \dfrac{x}{2} \\ 2x+2y &=& 3x \\ \mathbf{x} &=& \mathbf{2y} \\\\ \dfrac{\partial f(x,y)} {\partial y} &=& \dfrac{(x + y)^3}{x^2 y}\left( \dfrac{3(x+y)^3}{(x+y)^3} - \dfrac{x^2}{x^2y} \right) \\ &=& \dfrac{(x + y)^3}{x^2 y}\left( \dfrac{3}{x+y} - \dfrac{1}{y} \right) \\ 0 &=& \dfrac{(x + y)^3}{x^2 y}\left( \dfrac{3}{x+y} - \dfrac{1}{y} \right) \\ \dfrac{3}{x+y} - \dfrac{1}{y} &=& 0 \\ \dfrac{3}{x+y} &=& \dfrac{1}{y} \\ \dfrac{x+y}{3} &=& \dfrac{y} {1} \\ x+y &=& 3y \\ \mathbf{x} &=& \mathbf{2y} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{f(x,y)} & \mathbf{=} & \mathbf{\dfrac{(x + y)^3}{x^2 y} } \quad | \quad \text{minimize } x=2y \\\\ f(x,y) &=& \dfrac{(2y + y)^3}{(2y)^2 y} \\\\ &=& \dfrac{(3y)^3}{4y^2y} \\\\ &=& \dfrac{27y^3}{4y^3} \quad | \quad y \text{ is a positive real number} \\\\ &=& \dfrac{27}{4} \\\\ \mathbf{f(x,y)_{\text{minimum}}} &=& \mathbf{6.75} \\ \hline \end{array} \)

 

laugh

 Nov 13, 2019

6 Online Users

avatar