We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
64
2
avatar+1196 

Let \(f(x)=3x+2\)and \(g(x)=ax+b\), for some constants a and b. If ab=20 and \(f(g(x))=g(f(x))\) for \(x=0,1,2\ldots 9\), find the sum of all possible values of a.

 Oct 8, 2019
 #1
avatar+104962 
+2

f(g(x))  =  3(ax + b) + 2  =   3ax + 3b + 2

g(f(x))  =  a(3x + 2) + b  =  3ax + 2a  + b

 

Since these are equal then

 

3ax + 3b + 2  =  3ax + 2a + b

 

3b + 2  =  2a + b

 

2b + 2  =  2a

 

b + 1  =  a

 

b = a - 1

 

And since ab  = 20.....then

 

a (a - 1)  = 20

 

a^2  - a  = 20

 

a^2 - a - 20  = 0

 

(a - 5) (a + 4)  = 0

 

Setting each factor to 0  and solving for a produces  a = 5  or  a  = -4

 

So....the sum of these possible values for a   =  1

 

 

cool cool cool

 Oct 8, 2019
 #2
avatar+1196 
0

Thanks CPhill!!!

 Oct 8, 2019

9 Online Users

avatar