We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
129
1
avatar

Find the maximum area of a rectangle that can be inscribed in a unit circle.

 Jun 3, 2019

Best Answer 

 #1
avatar+8778 
+3

Let half the width of the rectangle  =  w

Then half the length of the rectangle  =  √[ 1 - w2 ]

And let the area of the rectangle  =  A

 

\(A\ =\ 4w\sqrt{1-w^2}\\~\\ \frac{dA}{dw}\ =\ 4\frac{d}{dw}\big(w\sqrt{1-w^2}\,\big)\\~\\ \frac{dA}{dw}\ =\ 4\Big[(w)(\frac12)(1-w^2)^{-\frac12}(-2w)+(\sqrt{1-w^2})(1)\Big]\\~\\ \frac{dA}{dw}\ =\ 4\Big[\frac{-w^2}{\sqrt{1-w^2}}+\sqrt{1-w^2}\Big]\\~\\ \frac{dA}{dw}\ =\ 4\Big[\frac{-w^2}{\sqrt{1-w^2}}+\frac{1-w^2}{\sqrt{1-w^2}}\Big]\\~\\ \frac{dA}{dw}\ =\ \frac{4-8w^2}{\sqrt{1-w^2}}\)

 

Now let's find what value of  w  makes  \(\frac{dA}{dw}\)  be  0 .

 

\(0\ =\ \frac{4-8w^2}{\sqrt{1-w^2}}\\~\\ 0\ =\ 4-8w^2\qquad\text{and}\qquad\sqrt{1-w^2}\ \neq\ 0\qquad\text{that is}\qquad w\ \neq\ \pm1\\~\\ 8w^2\ =\ 4\\~\\ w^2\ =\ \frac12\\~\\ w\ =\ \sqrt{\frac12}\qquad\text{or}\qquad w\ =\ -\sqrt{\frac12} \)

 

We know half the width of the rectangle can't be negative,

and by looking at a graph https://www.desmos.com/calculator/txezockcml

we can confirm that the maximum value of  A  occurs when  \(w=\sqrt{\frac12}\) .

 

When   \(w=\sqrt{\frac12}\)  ,

 

\(A\ =\ 4w\sqrt{1-w^2}\ =\ 4\sqrt{\frac12}\sqrt{1-\frac12}\ =\ 4\sqrt{\frac12}\sqrt{\frac12}\ =\ 4\cdot\frac12\ =\ 2\)

 

The maximum area is  2  sq units.

 Jun 3, 2019
 #1
avatar+8778 
+3
Best Answer

Let half the width of the rectangle  =  w

Then half the length of the rectangle  =  √[ 1 - w2 ]

And let the area of the rectangle  =  A

 

\(A\ =\ 4w\sqrt{1-w^2}\\~\\ \frac{dA}{dw}\ =\ 4\frac{d}{dw}\big(w\sqrt{1-w^2}\,\big)\\~\\ \frac{dA}{dw}\ =\ 4\Big[(w)(\frac12)(1-w^2)^{-\frac12}(-2w)+(\sqrt{1-w^2})(1)\Big]\\~\\ \frac{dA}{dw}\ =\ 4\Big[\frac{-w^2}{\sqrt{1-w^2}}+\sqrt{1-w^2}\Big]\\~\\ \frac{dA}{dw}\ =\ 4\Big[\frac{-w^2}{\sqrt{1-w^2}}+\frac{1-w^2}{\sqrt{1-w^2}}\Big]\\~\\ \frac{dA}{dw}\ =\ \frac{4-8w^2}{\sqrt{1-w^2}}\)

 

Now let's find what value of  w  makes  \(\frac{dA}{dw}\)  be  0 .

 

\(0\ =\ \frac{4-8w^2}{\sqrt{1-w^2}}\\~\\ 0\ =\ 4-8w^2\qquad\text{and}\qquad\sqrt{1-w^2}\ \neq\ 0\qquad\text{that is}\qquad w\ \neq\ \pm1\\~\\ 8w^2\ =\ 4\\~\\ w^2\ =\ \frac12\\~\\ w\ =\ \sqrt{\frac12}\qquad\text{or}\qquad w\ =\ -\sqrt{\frac12} \)

 

We know half the width of the rectangle can't be negative,

and by looking at a graph https://www.desmos.com/calculator/txezockcml

we can confirm that the maximum value of  A  occurs when  \(w=\sqrt{\frac12}\) .

 

When   \(w=\sqrt{\frac12}\)  ,

 

\(A\ =\ 4w\sqrt{1-w^2}\ =\ 4\sqrt{\frac12}\sqrt{1-\frac12}\ =\ 4\sqrt{\frac12}\sqrt{\frac12}\ =\ 4\cdot\frac12\ =\ 2\)

 

The maximum area is  2  sq units.

hectictar Jun 3, 2019

46 Online Users

avatar
avatar
avatar