In rectangle\( WXYZ, A\) is on side\(\overline{WX}\) \(such that AX = 4, B is on side \overline{YZ} such that BY = 18, and C is on side \overline{XY} such that angle ACB= 90 and CY = 2CX. Find AB.\)
Help?
Noori
Is there an image? Also is it possible if you can type that out of Latex as some of the information is not there. Very hard to read xd.
AX = 4
BY = 18
Call XC = x
then YC = 2x
Triangle(AXC) is a right triangle ---> AC2 = AX2 + XC2 ---> AC2 = 42 + x2 ---> AC = sqrt(16 + x2)
Triangle(BYC) is a right triangle ---> BC2 = BY2 + YC2 ---> BC2 = 182 + (2x)2 ---> BC = sqrt(324 + 4x2)
Area( trapezoid(AXYB) ) = ½·(x + 2x)(4 + 18) = 33x
Area( triangle(AXC) ) = ½·4·x = 2x
Area( triangle(BYC) ) = ½·18·2x = 18x
Area( triangle(ABC) ) = Area( trapezoid(AXYB) ) - Area( triangle(AXC) ) - Area( triangle(BYC) )
= 33x - 2x - 18x = 13x
Also: area( triangle(ABC) ) ½·AC·BC = ½· sqrt(16 + x2)·sqrt(324 + 4x2)
= ½· sqrt( (16 + x2) · (324 + 4x2) )
= ½· sqrt( 4x4 + 388x2 + 5184 )
Therefore: ½· sqrt( 4x4 + 388x2 + 5184 ) = 13x
sqrt( 4x4 + 388x2 + 5184 ) = 26x
4x4 + 388x2 + 5184 = 676x
4x4 - 288x2 + 5184 = 0
x4 - 72x2 + 1296 = 0
(x2 - 36)(x2 - 36 = 0
(x + 6)(x - 6)(x + 6)(x - 6) = 0
---> x = 6
---> XC = x ---> XC = 6
---> YC = 2x ---> YC = 12
---> AC = sqrt(16 + x2) ---> AC = sqrt(52)
---> BC = sqrt(324 + 4x2) ---> BC = sqrt(468)
---> AB2 = AC2 + BC2 ---> AB2 = 52 + 468 = 520 ---> AB = sqrt(520)