+0  
 
0
39
1
avatar

 

For certain ordered pairs (a,b) of real numbers, the system of equations \([\begin{aligned} ax+by&=1 \\ x^2 + y^2 &= 50 \end{aligned}\)

 

has at least one solution, and each solution is an ordered pair (x,y) of integers. How many such ordered pairs (a,b) are there?

 Dec 16, 2018
 #1
avatar+3563 
+2

\(\text{there are only so many pairs of integers that satisfy the second equation}\\ \text{They are }(\pm 1, \pm 7),(\pm 7,\pm 1),(\pm 5,\pm 5)\\ \text{each of these produces 4 ordered pairs }(a,b) \text{ thus there are 12 total} \)

.
 Dec 16, 2018

34 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.