We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
61
1
avatar+1206 

Find the sum of the roots, real and non-real, of the equation \(x^{2001}+\left(\frac 12-x\right)^{2001}=0\), given that there are no multiple roots.

 Jun 20, 2019

Best Answer 

 #1
avatar+22527 
+3

Find the sum of the roots, real and non-real, of the equation \(x^{2001}+\left(\dfrac 12-x\right)^{2001}=0\),
given that there are no multiple roots.

 

\(\begin{array}{|lcll|} \hline \mathbf{x^{2001}+\left(\dfrac 12-x\right)^{2001}} &=& {0} \\\\ x^{2001} + \dbinom{2001}{0}\left(\dfrac12\right)^{2001} - \dbinom{2001}{1} \left(\dfrac12\right)^{2000}x^1+\ldots + \\ - \dbinom{2001}{1999} \left(\dfrac12\right)^{2}x^{1999} + \dbinom{2001}{2000} \left(\dfrac12\right)^{1}x^{2000} - \dbinom{2001}{2001}x^{2001}&=& 0 \\\\ x^{2001} + \dbinom{2001}{0}\left(\dfrac12\right)^{2001} - \dbinom{2001}{1} \left(\dfrac12\right)^{2000}x^1+\ldots + \\ - \dbinom{2001}{1999} \left(\dfrac12\right)^{2}x^{1999} + \dbinom{2001}{2000} \left(\dfrac12\right)^{1}x^{2000} - x^{2001}&=& 0 \\\\ \dbinom{2001}{0}\left(\dfrac12\right)^{2001} - \dbinom{2001}{1} \left(\dfrac12\right)^{2000}x^1+\ldots + \\ - \dbinom{2001}{1999} \left(\dfrac12\right)^{2}x^{1999} + \dbinom{2001}{2000} \left(\dfrac12\right)^{1}x^{2000} &=& 0 \\ \hline \end{array} \)

 

\(\begin{array}{|lcll|} \hline \dbinom{2001}{2000} \left(\dfrac12\right)^{1}x^{2000} - \dbinom{2001}{1999} \left(\dfrac12\right)^{2}x^{1999}+- \ldots + \dbinom{2001}{0}\left(\dfrac12\right)^{2001} &=& 0 \\\\ 1000.5x^{2000} - 500250 x^{1999}+- \ldots + \left(\dfrac12\right)^{2001} &=& 0 \quad | \quad : 1000.5 \\\\ x^{2000} - \dfrac{500250}{1000.5}x^{1999}+- \ldots + \dfrac{\left(\dfrac12\right)^{2001}}{1000.5} &=& 0 \\\\ x^{2000} - 500x^{1999}+- \ldots + \dfrac{\left(\dfrac12\right)^{2001}}{1000.5} &=& 0 \\\\ x^{2000} \underbrace{- 500}_{=-\sum \limits_{k=1}^{2000} x_k}x^{1999}+- \ldots + \dfrac{\left(\dfrac12\right)^{2001}}{1000.5} &=& 0 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline -\sum \limits_{k=1}^{2000} x_k &=& -500 \\ \mathbf{\sum \limits_{k=1}^{2000} x_k} &=& \mathbf{500} \\ \hline \end{array}\)

 

The sum of the roots is 500

 

laugh

 Jun 20, 2019
 #1
avatar+22527 
+3
Best Answer

Find the sum of the roots, real and non-real, of the equation \(x^{2001}+\left(\dfrac 12-x\right)^{2001}=0\),
given that there are no multiple roots.

 

\(\begin{array}{|lcll|} \hline \mathbf{x^{2001}+\left(\dfrac 12-x\right)^{2001}} &=& {0} \\\\ x^{2001} + \dbinom{2001}{0}\left(\dfrac12\right)^{2001} - \dbinom{2001}{1} \left(\dfrac12\right)^{2000}x^1+\ldots + \\ - \dbinom{2001}{1999} \left(\dfrac12\right)^{2}x^{1999} + \dbinom{2001}{2000} \left(\dfrac12\right)^{1}x^{2000} - \dbinom{2001}{2001}x^{2001}&=& 0 \\\\ x^{2001} + \dbinom{2001}{0}\left(\dfrac12\right)^{2001} - \dbinom{2001}{1} \left(\dfrac12\right)^{2000}x^1+\ldots + \\ - \dbinom{2001}{1999} \left(\dfrac12\right)^{2}x^{1999} + \dbinom{2001}{2000} \left(\dfrac12\right)^{1}x^{2000} - x^{2001}&=& 0 \\\\ \dbinom{2001}{0}\left(\dfrac12\right)^{2001} - \dbinom{2001}{1} \left(\dfrac12\right)^{2000}x^1+\ldots + \\ - \dbinom{2001}{1999} \left(\dfrac12\right)^{2}x^{1999} + \dbinom{2001}{2000} \left(\dfrac12\right)^{1}x^{2000} &=& 0 \\ \hline \end{array} \)

 

\(\begin{array}{|lcll|} \hline \dbinom{2001}{2000} \left(\dfrac12\right)^{1}x^{2000} - \dbinom{2001}{1999} \left(\dfrac12\right)^{2}x^{1999}+- \ldots + \dbinom{2001}{0}\left(\dfrac12\right)^{2001} &=& 0 \\\\ 1000.5x^{2000} - 500250 x^{1999}+- \ldots + \left(\dfrac12\right)^{2001} &=& 0 \quad | \quad : 1000.5 \\\\ x^{2000} - \dfrac{500250}{1000.5}x^{1999}+- \ldots + \dfrac{\left(\dfrac12\right)^{2001}}{1000.5} &=& 0 \\\\ x^{2000} - 500x^{1999}+- \ldots + \dfrac{\left(\dfrac12\right)^{2001}}{1000.5} &=& 0 \\\\ x^{2000} \underbrace{- 500}_{=-\sum \limits_{k=1}^{2000} x_k}x^{1999}+- \ldots + \dfrac{\left(\dfrac12\right)^{2001}}{1000.5} &=& 0 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline -\sum \limits_{k=1}^{2000} x_k &=& -500 \\ \mathbf{\sum \limits_{k=1}^{2000} x_k} &=& \mathbf{500} \\ \hline \end{array}\)

 

The sum of the roots is 500

 

laugh

heureka Jun 20, 2019

4 Online Users