We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
58
1
avatar+1193 

The fourth degree polynomial equation \(x^4 - 7x^3 + 4x^2 + 7x - 4 = 0\) has four real roots, a, b, c, and d. What is the value of the sum \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\)? Express your answer as a common fraction.

 Jun 4, 2019

Best Answer 

 #1
avatar+5172 
+1

\(a b c d = c_0 = -4\\ bcd+acd+abd+abc = -(c_1) = -7\\ \dfrac 1 a + \dfrac 1 b+\dfrac 1 c+\dfrac 1 d = \\\dfrac{bcd+acd+abd+abc}{a b c d } = \dfrac{-7}{-4}=\dfrac 7 4\)

.
 Jun 4, 2019
 #1
avatar+5172 
+1
Best Answer

\(a b c d = c_0 = -4\\ bcd+acd+abd+abc = -(c_1) = -7\\ \dfrac 1 a + \dfrac 1 b+\dfrac 1 c+\dfrac 1 d = \\\dfrac{bcd+acd+abd+abc}{a b c d } = \dfrac{-7}{-4}=\dfrac 7 4\)

Rom Jun 4, 2019

9 Online Users

avatar
avatar