+0  
 
0
837
1
avatar+1245 

The fourth degree polynomial equation \(x^4 - 7x^3 + 4x^2 + 7x - 4 = 0\) has four real roots, a, b, c, and d. What is the value of the sum \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\)? Express your answer as a common fraction.

 Jun 4, 2019

Best Answer 

 #1
avatar+6251 
+1

\(a b c d = c_0 = -4\\ bcd+acd+abd+abc = -(c_1) = -7\\ \dfrac 1 a + \dfrac 1 b+\dfrac 1 c+\dfrac 1 d = \\\dfrac{bcd+acd+abd+abc}{a b c d } = \dfrac{-7}{-4}=\dfrac 7 4\)

.
 Jun 4, 2019
 #1
avatar+6251 
+1
Best Answer

\(a b c d = c_0 = -4\\ bcd+acd+abd+abc = -(c_1) = -7\\ \dfrac 1 a + \dfrac 1 b+\dfrac 1 c+\dfrac 1 d = \\\dfrac{bcd+acd+abd+abc}{a b c d } = \dfrac{-7}{-4}=\dfrac 7 4\)

Rom Jun 4, 2019

4 Online Users