We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Given that \(a + b + c = 5\) and \(1 \le a,b,c \le 2,\)find the minimum value of \(\frac{1}{a + b} + \frac{1}{b + c}.\)

Guest Mar 5, 2019

#1**+2 **

\(a+b+c=5,~b = 5-a-c\\ \dfrac{1}{a+b} + \dfrac{1}{b+c} = \dfrac{1}{5-c}+\dfrac{1}{5-a}\\ \text{If we want the minimum of this expression it seems clearly that }a,~c\\ \text{should be made as small as possible}\\ \text{Further, as the problem is symmetric in }a \text{ and }c\\ \text{we expect these two to be equal}\\ (a,b,c)=\left(\dfrac 3 2,~2,~\dfrac 3 2\right)\\ \dfrac{1}{a+b}+\dfrac{1}{a+c} =\dfrac 4 7\)

.Rom Mar 6, 2019