Find positive integers (a,b) so that √37+20√3=a+b√3.
√37+20√3=a+b√337+20√3=(a+b√3)237+20√3=a2+2ab√3+3b237+20√3=a2+3b2⏟=37+2ab⏟=20√3
(1)2ab=20ab=10b=10a(2)a2+3b2=37a2+3102a2=37a2+300a2=37|⋅a2a4+300=37a2a4−37a2+300=0a2=37±√372−4⋅3002a2=37±√1692a2=37±132a2=25ora2=12a=±5ora=±2√3|positive integers (a,b)a=5ora=2√3|a without √3a=5b=10ab=105b=2
√37+20√3=5+2√3
Find positive integers (a,b) so that √37+20√3=a+b√3.
√37+20√3=a+b√337+20√3=(a+b√3)237+20√3=a2+2ab√3+3b237+20√3=a2+3b2⏟=37+2ab⏟=20√3
(1)2ab=20ab=10b=10a(2)a2+3b2=37a2+3102a2=37a2+300a2=37|⋅a2a4+300=37a2a4−37a2+300=0a2=37±√372−4⋅3002a2=37±√1692a2=37±132a2=25ora2=12a=±5ora=±2√3|positive integers (a,b)a=5ora=2√3|a without √3a=5b=10ab=105b=2
√37+20√3=5+2√3