We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
55
4
avatar+84 

Let \(f_1,f_2,f_3,...\) be a sequence of numbers such that \(f_n = f_{n - 1} + f_{n - 2}\)
for every integer \(n \ge 3\) . If \(f_7 = 83\), what is the sum of the first 10 terms of the sequence?

 Jun 18, 2019
 #1
avatar
+1

Here is one possibility. there maybe others:
5, 7.25, 12.25, 19.5, 31.75, 51.25, 83, 134.25, 217.25, 351.50 =913

 Jun 18, 2019
 #2
avatar+101856 
+2

We can set this up as a Fibonacci Series

 

f1 =f1

f2 = f2

f3 = f2 + f1

f4 = 2f2 + f1

f5 = 3f2 + 2f1

f6 = 5f2 + 3f1

f7 = 8f2 + 5f1

f8 = 13f2 + 8f1

f9 = 21f2 + 13f1

f10 = 34f2 + 21fi

______________

Sum  =  88f2 + 55f1

 

Using a Fibonacci identity......  11f(5)  =  f(10)

So

11 [ 3f2 + 2f1]  =  33f2 + 22f1   =  34f2 + 21f1 ⇒   f1 = f2

 

Then

 

f7  =  8f2 + 5f1

f7 = 8f1 + 5fi

f7 = 13f1  = 83

13f1  = 83

f1 = 83/13

 

And the sum of the series =   88f2 + 55f1  =  88f1 + 55f1  =   143 f1

 

So....the sum is    143 (83/13)  =   913

 

Just as the Guest found  !!!

 

 

cool cool cool

 Jun 18, 2019
edited by CPhill  Jun 18, 2019
 #3
avatar+84 
+1

Thanks

 Jun 19, 2019
 #4
avatar+22546 
+1

Let \(f_1,f_2,f_3,\ldots\) be a sequence of numbers such that \(f_n = f_{n - 1} + f_{n - 2}\) for every integer \(n \ge 3\) .

If \(f_7 = 83\), what is the sum of the first 10 terms of the sequence?

 

\(\begin{array}{|rclcl|} \hline f_1 &=& 0\cdot f_2 &+& 1\cdot f_1 \\ f_2 &=& 1\cdot f_2 &+& 0\cdot f_1 \\ f_3 &=& 1\cdot f_2 &+& 1\cdot f_1 \\ f_4 &=& 2\cdot f_2 &+& 1\cdot f_1 \\ f_5 &=& 3\cdot f_2 &+& 2\cdot f_1 \\ f_6 &=& 5\cdot f_2 &+& 3\cdot f_1 \\ f_7 &=& 8\cdot f_2 &+& 5\cdot f_1 \\ \ldots \\ \mathbf{f_n} &=& \mathbf{ F_{n-1} \cdot f_2} &\mathbf{+}& \mathbf{F_{n-2}\cdot f_1 } \\\\ && && \text{Fibonacci Numbers:} \\ && && \ldots \\ && && F_{-1} = 1 \\ && && F_{0} = 0 \\ && && F_{1} = 1 \\ && && F_{2} = 1 \\ && && F_{3} = 2 \\ && && F_{4} = 3 \\ && && F_{5} = 5 \\ && && F_{6} = 8 \\ && && F_{7} = 13 \\ && && F_{8} =21 \\ && && F_{9} = 34 \\ && && F_{10} = 55 \\ && && F_{11} = 89 \\ && && \ldots \\ \hline \end{array} \)

 

\(\mathbf{f_1 = \ ?,\ f_2 = \ ?}\)

\(\begin{array}{|rcll|} \hline f_7 = 83 &=& F_6\cdot f_2 + F_5\cdot f_1 \quad | \quad F_6 = 8,\qquad F_5=5 \\ \hline \end{array}\)

\(\begin{array}{|rclrclrclrcl|} \hline 83 &=& 8f_2 + 5f_1 \\ 5f_1 &=&83- 8f_2 \\ f_1 &=& \dfrac{83- 8f_2}{5} \\ f_1 &=& \dfrac{80-5f_2-3f_2+3}{5} \\ f_1 &=& 16-f_2+\underbrace{\dfrac{3-3f_2}{5}}_{=a} \\ f_1 &=& 16-f_2+a & a &=& \dfrac{3-3f_2}{5} \\ & & & 5a &=& 3-3f_2 \\ & & & 3f_2 &=& 3-5a \\ & & & f_2 &=& \dfrac{3-5a}{3} \\ & & & f_2 &=& \dfrac{3-3a-2a}{3} \\ & & & f_2 &=& 1-a-\underbrace{\dfrac{2a}{3}}_{=b} \\ & & & f_2 &=& 1-a-b & b &=& \dfrac{2a}{3} \\ & & & & & & 3b &=& 2a \\ & & & & & & 2a &=& 3b \\ & & & & & & a &=& \dfrac{3b}{2} \\ & & & & & & a &=& \dfrac{2b+b}{2} \\ & & & & & & a &=& b +\underbrace{\dfrac{b}{2}}_{=c} \\ & & & & & & a &=& b +c & c &=& \dfrac{b}{2} \\ & & & & & & & & & \mathbf{b} &=& \mathbf{2c} \\ & & & & & & a &=& 2c +c \\ & & & & & & \mathbf{a} &=& \mathbf{3c} \\ & & & f_2 &=& 1-3c-2c \\ & & & \mathbf{f_2} &=& \mathbf{1-5c} \\ f_1 &=& 16-(1-5c)+3c \\ \mathbf{f_1} &=& \mathbf{15+8c} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \mathbf{f_1} &=& \mathbf{15+8c} ,\ c\in \mathbb{Z}\\ \mathbf{f_2} &=& \mathbf{1-5c},\ c\in \mathbb{Z}\\ \hline \end{array}\)

 

sum:

\(\begin{array}{|rclcl|} \hline s_1 &=& 0\cdot f_2 &+& 1\cdot f_1 \\ s_2 &=& 1\cdot f_2 &+& 1\cdot f_1 \\ s_3 &=& 2\cdot f_2 &+& 2\cdot f_1 \\ s_4 &=& 4\cdot f_2 &+& 3\cdot f_1 \\ s_5 &=& 7\cdot f_2 &+& 5\cdot f_1 \\ s_6 &=& 20\cdot f_2 &+& 8\cdot f_1 \\ \ldots \\ \mathbf{s_n} &=& \mathbf{ (F_{n+1}-1) \cdot f_2} &\mathbf{+}& \mathbf{F_{n}\cdot f_1 } \\ \hline \end{array}\)

 

\(\mathbf{s_{10}=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{s_{10}} &=& \mathbf{(F_{11}-1)\cdot f_2 +F_{10}} \cdot f_1 \quad &| \quad F_{11}=89,\ F_{10}= 55 \\\\ &=& 88 f_2 +55f_1 \quad &| \quad f_1 = 15+8c,\ f_2 = 1-5c \\ &=& 88\cdot(1-5c) +55\cdot(15+8c) \\ &=& 88 -88\cdot 5c +55\cdot 15+ 55\cdot 8c \quad &| \quad 88\cdot 5 = 55\cdot 8 \\ &=& 88 +55\cdot 15 \\ &=& \mathbf{913} \\ \hline \end{array}\)

 

The sum of the first 10 terms of the sequence is 913

 

laugh

 Jun 19, 2019

8 Online Users

avatar