Let f1,f2,f3,... be a sequence of numbers such that fn=fn−1+fn−2
for every integer n≥3 . If f7=83, what is the sum of the first 10 terms of the sequence?
Here is one possibility. there maybe others:
5, 7.25, 12.25, 19.5, 31.75, 51.25, 83, 134.25, 217.25, 351.50 =913
We can set this up as a Fibonacci Series
f1 =f1
f2 = f2
f3 = f2 + f1
f4 = 2f2 + f1
f5 = 3f2 + 2f1
f6 = 5f2 + 3f1
f7 = 8f2 + 5f1
f8 = 13f2 + 8f1
f9 = 21f2 + 13f1
f10 = 34f2 + 21fi
______________
Sum = 88f2 + 55f1
Using a Fibonacci identity...... 11f(5) = f(10)
So
11 [ 3f2 + 2f1] = 33f2 + 22f1 = 34f2 + 21f1 ⇒ f1 = f2
Then
f7 = 8f2 + 5f1
f7 = 8f1 + 5fi
f7 = 13f1 = 83
13f1 = 83
f1 = 83/13
And the sum of the series = 88f2 + 55f1 = 88f1 + 55f1 = 143 f1
So....the sum is 143 (83/13) = 913
Just as the Guest found !!!
Let f1,f2,f3,… be a sequence of numbers such that fn=fn−1+fn−2 for every integer n≥3 .
If f7=83, what is the sum of the first 10 terms of the sequence?
f1=0⋅f2+1⋅f1f2=1⋅f2+0⋅f1f3=1⋅f2+1⋅f1f4=2⋅f2+1⋅f1f5=3⋅f2+2⋅f1f6=5⋅f2+3⋅f1f7=8⋅f2+5⋅f1…fn=Fn−1⋅f2+Fn−2⋅f1Fibonacci Numbers:…F−1=1F0=0F1=1F2=1F3=2F4=3F5=5F6=8F7=13F8=21F9=34F10=55F11=89…
f1= ?, f2= ?
f7=83=F6⋅f2+F5⋅f1|F6=8,F5=5
83=8f2+5f15f1=83−8f2f1=83−8f25f1=80−5f2−3f2+35f1=16−f2+3−3f25⏟=af1=16−f2+aa=3−3f255a=3−3f23f2=3−5af2=3−5a3f2=3−3a−2a3f2=1−a−2a3⏟=bf2=1−a−bb=2a33b=2a2a=3ba=3b2a=2b+b2a=b+b2⏟=ca=b+cc=b2b=2ca=2c+ca=3cf2=1−3c−2cf2=1−5cf1=16−(1−5c)+3cf1=15+8c
f1=15+8c, c∈Zf2=1−5c, c∈Z
sum:
s1=0⋅f2+1⋅f1s2=1⋅f2+1⋅f1s3=2⋅f2+2⋅f1s4=4⋅f2+3⋅f1s5=7⋅f2+5⋅f1s6=20⋅f2+8⋅f1…sn=(Fn+1−1)⋅f2+Fn⋅f1
s10= ?
s10=(F11−1)⋅f2+F10⋅f1|F11=89, F10=55=88f2+55f1|f1=15+8c, f2=1−5c=88⋅(1−5c)+55⋅(15+8c)=88−88⋅5c+55⋅15+55⋅8c|88⋅5=55⋅8=88+55⋅15=913
The sum of the first 10 terms of the sequence is 913