ln(1/e)=x
i couldn't solve it
Since ln of e=1, then 1/e=e^-1=0.36788.....=x
\(\begin{array}{rcl} x&=&\ln{ ( \frac{1}{e} ) } \\ x&=& \ln{ ( 1 ) } - \ln{(e)}\\ \ln{(1)} = 0 &&\ln{(e)} = 1 \\ x&=&0-1\\ x &=& -1 \end{array}\)
x=ln(1/e)
x=ln(1) - ln (e) | ln(1) = 0 and ln(e) = 1
x=0-1
x=-1