Suppose that a(x+b(x+3))=2(x+6) for all real values of x. Determine a+b.
a(x+b(x+3))=2(x+6) expand
a(x + bx + 3b) =2x+12
ax + abx + 3ab= 2x +12 equate 'like' terms on both sides of the equations
ax(1+b) =2x and 3ab=12
a(1+b) = 2 ab = 4
a = 2/(1+b) Sub this into the second equation ab=4
2/(1+b) *b = 4
2b/(1 +b) = 4
2b = 4(1+b)
b = 2+2b
-b=2 so b = -2 a= 2/(1+(-2)) = -2
a+b = -2 + -2 = -4
a(x+b(x+3))=2(x+6) expand
a(x + bx + 3b) =2x+12
ax + abx + 3ab= 2x +12 equate 'like' terms on both sides of the equations
ax(1+b) =2x and 3ab=12
a(1+b) = 2 ab = 4
a = 2/(1+b) Sub this into the second equation ab=4
2/(1+b) *b = 4
2b/(1 +b) = 4
2b = 4(1+b)
b = 2+2b
-b=2 so b = -2 a= 2/(1+(-2)) = -2
a+b = -2 + -2 = -4