+0  
 
0
124
3
avatar

Rationalize the denominator of: \(\frac{1}{\sqrt{2}+\sqrt{8}+\sqrt{32}}\). The answer can be written as \(\frac{\sqrt{A}}{B}\), where \(A\) and \(B\) are integers. Find the minimum possible value of \(A+B\).

 Feb 22, 2023
 #1
avatar
0

The denominator of 1/(sqrt(2) + sqrt(8) + sqrt(32)) can be rationalized by multiplying both numerator and denominator by -sqrt(2) + sqrt(8) + sqrt(32). This gives us (-sqrt(2) + sqrt(8) + sqrt(32))/(-2 + 8 + 32) = sqrt(2)/19.

 

The final answer is 2 + 19 = 21.

 Feb 22, 2023
 #2
avatar+2667 
+1

\({1 \over \sqrt{2} + \sqrt{8} + \sqrt{32} }\)

\({1 \over \sqrt{2} + 2\sqrt{2} + 4\sqrt{2} }\)

\({1 \over 7\sqrt{2} }\)

\({1 \over 7\sqrt 2} \times { \sqrt{2} \over \sqrt {2}} \)

\({\sqrt 2 \over 14} \)

\(2 + 14 = \color{brown}\boxed{16}\)

.
 Feb 22, 2023
 #3
avatar
0

That answer is wrong.

Guest Feb 23, 2023

1 Online Users