+0  
 
0
27
1
avatar+86 

In the figure below, ABCD is a parallelogram, AD = 18 and DC = 27. Segments EG (which is a repeating decimal) and FH  (which is a repeating decimal) are perpendicular to sides of the parallelogram as shown, and EG = 16. Determine FH.

 

 
SmartMathMan  Dec 5, 2017
edited by Guest  Dec 5, 2017
Sort: 

1+0 Answers

 #1
avatar+79819 
+2

 

Since DC  can be considered as one base of parallelogram   ABCD  and  EG is the height drawn to this base.....the area  is  DC * EG =  27 * 16  = 432 units^2

 

But BC  can be considered as another base  and  FH  is a height drawn to this base....and since the area is constant......we have that

 

432  = BC * FH     but   AD  = BC  = 18  ....so....

 

432  = 18 * FH      divide both sides by 18

 

24  = FH

 

 

cool cool cool

 
CPhill  Dec 5, 2017

14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details