We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
64
3
avatar

Suppose with with $A, B, C \in \mathbb{R}$. What is $A$?

\(\frac{1}{x^3-x^2-21x+45}=\frac{A}{x+5}+\frac{B}{x-3} + \frac{C}{(x - 3)^2}\)

 Sep 1, 2019
edited by Guest  Sep 1, 2019
 #1
avatar+103721 
0

Please edit this and write it properly.

 Sep 1, 2019
 #3
avatar+103721 
0

Thanks for doing as I requested.

Melody  Sep 2, 2019
 #2
avatar+23086 
+2

Suppose with with \(A, B, C \in \mathbb{R}\).

What is \(A\)?
\(\dfrac{1}{x^3-x^2-21x+45}=\dfrac{A}{x+5}+\dfrac{B}{x-3} + \dfrac{C}{(x - 3)^2}\)

 

\(x^3-x^2-21x+45=(x+5)(x-3)^2\)

 

\(\begin{array}{|lrcll|} \hline & \mathbf{\dfrac{1}{x^3-x^2-21x+45} } &=&\mathbf{\dfrac{A}{x+5}+\dfrac{B}{x-3} + \dfrac{C}{(x - 3)^2} } \\\\ & \dfrac{1}{(x+5)(x-3)^2} &=&\dfrac{A}{x+5}+\dfrac{B}{x-3} + \dfrac{C}{(x-3)^2} \quad | \quad \times (x+5)(x-3)^2 \\\\ & 1 &=& A(x-3)^2 + B(x+5)(x-3) + C(x+5) \\ \hline x=-5: & 1 &=& A(-5-3)^2 + B(-5+5)(-5-3) + C(-5+5) \\ & 1 &=& A(-8)^2 + B(0)(-8) + C(0) \\ & 1 &=& 64A \\ & \mathbf{A} &=& \mathbf{ \dfrac{1}{64} } \\ \hline \end{array}\)

 

 

laugh

 Sep 1, 2019

21 Online Users

avatar