y = -x^2 + 12x - 4
We need to complete the square, NSS
Factor out the negative
y = - ( x^2 - 12x + 4)
Take 1/2 of -12 = -6 square it = 36....add it and subtract it inside the parentheses
y = - (x^2 - 12x + 36 + 4 - 36) factor the first three terms, simplify the rest
y = - [ ( x - 6)^2 - 32 ] apply the negative back across the terms
y = - (x - 6)^2 + 32
In the form, y = a (x - h)^2 + k the vertex is (h, k) = ( 6 , 32 )