We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
122
8
avatar

Compute \(\sum_{n = 1}^\infty \frac{2n - 1}{n(n + 1)(n + 2)}\)

 Feb 25, 2019

Best Answer 

 #1
avatar+18439 
+2

I went to Symbolab for this one:

 

https://www.symbolab.com/solver/limit-calculator/%5Clim_%7Bx%5Cto%5Cinfty%20%7D%5Cleft(%5Cfrac%7B%5Cleft(2x-1%5Cright)%7D%7B%5Cleft(x%5Cright)%5Cleft(x%2B1%5Cright)%5Cleft(x%2B2%5Cright)%7D%5Cright)

 Feb 25, 2019
 #1
avatar+18439 
+2
Best Answer

I went to Symbolab for this one:

 

https://www.symbolab.com/solver/limit-calculator/%5Clim_%7Bx%5Cto%5Cinfty%20%7D%5Cleft(%5Cfrac%7B%5Cleft(2x-1%5Cright)%7D%7B%5Cleft(x%5Cright)%5Cleft(x%2B1%5Cright)%5Cleft(x%2B2%5Cright)%7D%5Cright)

ElectricPavlov Feb 25, 2019
 #2
avatar
0

The link doesn't work on edge

Guest Feb 25, 2019
edited by Guest  Feb 25, 2019
 #3
avatar+101804 
+1

 

One of our members, heureka, may be able to present the solution in detail

 

 

cool cool cool

 Feb 25, 2019
 #4
avatar+102447 
+1

Wolfram|Alpha says to do it using the comparison test.

 

Here is a video on the comparison test.

 

Note: I have not wached the video but Khan Academy produces many great video clips.

 

https://www.khanacademy.org/math/ap-calculus-bc/bc-series-new/bc-10-6/v/comparison-test-convergence

 Feb 25, 2019
 #5
avatar
+1

It is the sum of this sequence:

 

1/(1.2.3) + 3/(2.3.4) + 5/(3.4.5) + 7/(4.5.6) +...............+ (2n - 1) / n(n+1(n+2) = 3 / 4

 Feb 25, 2019
 #6
avatar+102447 
0

Yes, we already know that.

Melody  Feb 25, 2019
 #7
avatar+22516 
+2

Compute

\(\mathbf{\huge{\sum \limits_{n = 1}^{\infty} \dfrac{2n - 1}{n(n + 1)(n + 2)}}}\)

 

\(\begin{array}{lcll} \mathbf{ \dfrac{1}{1 \cdot 2 \cdot 3} + \dfrac{3}{2 \cdot 3 \cdot 4} + \dfrac{5}{3 \cdot 4 \cdot 5} + \dfrac{7}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2n - 1}{n \cdot (n+1) \cdot (n+2)} + \cdots =\ \mathbf{ ? } } \\ \begin{array}{|lcll|} \hline s_n = \dfrac{1}{1 \cdot 2 \cdot 3} + \dfrac{3}{2 \cdot 3 \cdot 4} + \dfrac{5}{3 \cdot 4 \cdot 5} + \dfrac{7}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2n - 1}{n \cdot (n+1) \cdot (n+2)} \\ \hline \end{array} \\ \end{array}\\\)

 

Formula:

\(\begin{array}{|lcll|} \hline \text{in general}:\ \frac{1}{n(n+d)} = \frac{1}{d}\left(\frac{1}{n}- \frac{1}{n+d} \right) \\ \hline \\ \begin{array}{lrcll} \text{we need}: & \dfrac{1}{(n+1)(n+2)} &=& \dfrac{1}{n+1}-\dfrac{1}{n+2} \\ & \dfrac{1}{n(n+1)} &=& \dfrac{1}{n}-\dfrac{1}{n+1} \\ & \dfrac{1}{n(n+2)} &=& \dfrac{1}{2} \left( \dfrac{1}{n}-\dfrac{1}{n+2} \right) \\ \end{array} \\ \hline \end{array}\)

 

We rearrange:
\(\begin{array}{|rcll|} \hline \dfrac{2n - 1}{n \cdot (n+1) \cdot (n+2)} &=&\left(\dfrac{2n - 1}{n}\right)\times \dfrac{1}{(n+1) \cdot (n+2)} \\\\ &=& \left(\dfrac{2n - 1}{n}\right)\times \left( \dfrac{1}{n+1}-\dfrac{1}{n+2} \right) \\\\ &=& \left(2-\dfrac{1}{n}\right)\times \left( \dfrac{1}{n+1}-\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{2}{n+1}-\dfrac{2}{n+2}-\dfrac{1}{n(n+1)}+\dfrac{1}{n(n+2)} \\\\ &=& \dfrac{2}{n+1}-\dfrac{2}{n+2}-\left(\dfrac{1}{n}-\dfrac{1}{n+1} \right)+ \dfrac{1}{2}\left(\dfrac{1}{n}-\dfrac{1}{n+2} \right) \\\\ &=& -\dfrac{1}{n}+\dfrac{1}{2}\cdot \dfrac{1}{n}+\dfrac{2}{n+1}+\dfrac{1}{n+1}-\dfrac{2}{n+2}-\dfrac{1}{2}\cdot \left(\dfrac{1}{n+2}\right) \\\\ &=& -\dfrac{1}{2n} + \dfrac{3}{n+1}-\dfrac{5}{2(n+2)} \quad | \quad \dfrac{1}{2(n+2)} = \dfrac{1}{n}\cdot \left( \dfrac12 - \dfrac{1}{n+2} \right) \\\\ &=& -\dfrac{1}{2n} + \dfrac{3}{n+1}-5\cdot \dfrac{1}{n}\cdot \left( \dfrac12 - \dfrac{1}{n+2} \right) \\\\ &=& -\dfrac{1}{2n} + \dfrac{3}{n+1} -\dfrac{5}{2n} + \dfrac{5}{n(n+2)} \\\\ &=& -\dfrac{3}{n} + \dfrac{3}{n+1} + \dfrac{5}{n(n+2)} \quad | \quad \dfrac{1}{n(n+2)} = \dfrac{1}{2}\cdot \left( \dfrac{1}{n} - \dfrac{1}{n+2} \right) \\\\ &=& -\dfrac{3}{n} + \dfrac{3}{n+1} + 5\cdot \dfrac{1}{2}\cdot \left( \dfrac{1}{n} - \dfrac{1}{n+2} \right) \\\\ &=& -\dfrac{3}{n} + \dfrac{3}{n+1} + \dfrac{5}{2n} - \dfrac{5}{2(n+2)} \\\\ \mathbf{\dfrac{2n - 1}{n \cdot (n+1) \cdot (n+2)} } & \mathbf{=} & \mathbf{ -\dfrac{3}{n} + \dfrac{3}{n+1} + \dfrac{5}{2n} - \dfrac{5}{2(n+2)} } \\ \hline \end{array}\)

 

Telescoping series:

\(\begin{array}{|rcll|} \hline s_n &=& \mathbf{-3} &\color{red}+& \color{red}\dfrac{3}{2} &+& \mathbf{\dfrac{5}{2}\cdot \dfrac{1}{1}} &\color{green}-& \color{green}\dfrac{5}{2}\cdot \dfrac{1}{3} \\\\ &\color{red}-& \color{red}\dfrac{3}{2} &\color{red}+& \color{red}\dfrac{3}{3} &+&\mathbf{\dfrac{5}{2}\cdot \dfrac{1}{2}}&\color{green}-& \color{green}\dfrac{5}{2}\cdot \dfrac{1}{4} \\\\ &\color{red}-& \color{red}\dfrac{3}{3} &\color{red}+& \color{red}\dfrac{3}{4} &\color{green}+&\color{green}\dfrac{5}{2}\cdot \dfrac{1}{3}&\color{green}-& \color{green}\dfrac{5}{2}\cdot \dfrac{1}{5} \\\\ &\color{red}-& \color{red}\dfrac{3}{4} &\color{red}+& \color{red}\dfrac{3}{5} &\color{green}+&\color{green}\dfrac{5}{2}\cdot \dfrac{1}{4}&\color{green}-& \color{green}\dfrac{5}{2}\cdot \dfrac{1}{6} \\\\ &\color{red}-& \color{red}\dfrac{3}{5} &\color{red}+& \color{red}\dfrac{3}{6} &\color{green}+&\color{green}\dfrac{5}{2}\cdot \dfrac{1}{5}&\color{green}-& \color{green}\dfrac{5}{2}\cdot \dfrac{1}{7} \\\\ &\color{red}-& \color{red}\dfrac{3}{6} &\color{red}+& \color{red}\dfrac{3}{7} &\color{green}+&\color{green}\dfrac{5}{2}\cdot \dfrac{1}{6}&\color{green}-& \color{green}\dfrac{5}{2}\cdot \dfrac{1}{8} \\\\ && \ldots \\\\ &\color{red}-& \color{red}\dfrac{3}{n-3} &\color{red}+& \color{red}\dfrac{3}{n-2} &\color{green}+&\color{green}\dfrac{5}{2(n-3)}&\color{green}-& \color{green}\dfrac{5}{2(n-1)} \\\\ &\color{red}-& \color{red}\dfrac{3}{n-2} &\color{red}+& \color{red}\dfrac{3}{n-1} &\color{green}+&\color{green}\dfrac{5}{2(n-2)}&\color{green}-& \color{green}\dfrac{5}{2n} \\\\ &\color{red}-& \color{red}\dfrac{3}{n-1} &\color{red}+& \color{red}\dfrac{3}{n} &\color{green}+&\color{green}\dfrac{5}{2(n-1)}&-& \mathbf{\dfrac{5}{2(n+1)}} \\\\ &\color{red}-& \color{red}\dfrac{3}{n} &+& \mathbf{\dfrac{3}{n+1}} &\color{green}+&\color{green}\dfrac{5}{2n}&-& \mathbf{\dfrac{5}{2(n+2)}} \\ \hline \end{array}\)

 

The colored terms shorten out

 

So \(s_n\) is, we have all black terms left :
\(\begin{array}{|rcll|} \hline s_n &=& -3 + \dfrac{5}{2} + \dfrac{5}{2}\cdot \dfrac{1}{2} - \dfrac{5}{2(n+1)} + \dfrac{3}{n+1} -\dfrac{5}{2(n+2)} \\\\ \mathbf{s_n} &\mathbf{=}& \mathbf{\dfrac{3}{4} - \dfrac{5}{2(n+1)} + \dfrac{3}{n+1} -\dfrac{5}{2(n+2)} } \\ \hline \end{array} \)

 

\( \lim \limits_{n\to \infty} { \dfrac{5}{2(n+1)}} = 0 \quad \text{ and } \quad \lim \limits_{n\to \infty} { \dfrac{3}{n+1} } = 0 \quad \text{ and } \quad \lim \limits_{n\to \infty} { \dfrac{5}{2(n+2)} } = 0\)

 

\(\begin{array}{|rcll|} \hline \lim \limits_{n\to \infty} s_n &=& \dfrac{3}{4} - 0 + 0 -0 \\\\ &=& \dfrac{3}{4} \\ \hline \end{array}\)

 

\(\begin{array}{lcll} \mathbf{\huge{\sum \limits_{n = 1}^{\infty} \dfrac{2n - 1}{n(n + 1)(n + 2)}} = \dfrac{3}{4} } \\ \end{array}\\ \)

 

laugh

 Feb 26, 2019
 #8
avatar+101804 
0

Wow!!!!....impressive, Heureka!!!

 

 

cool cool cool

CPhill  Feb 26, 2019

11 Online Users

avatar