+0  
 
0
63
2
avatar

A right pyramid with a square base has total surface area 432 square units. The area of each triangular face is half the area of the square face. What is the volume of the pyramid in cubic units?

 Aug 24, 2023
 #1
avatar
0

Let the side length of the square base be s. Then the triangular faces have area s2/2, and the total surface area is 4(s2/2)+s2=4s2=432, so s2=108 and s=12. The height of the pyramid is then the length of an altitude of a triangle with base 12 and area 6s2=756. By the Pythagorean Theorem, the height is sqrt(144+756)​=sqrt(900)​=30.

The volume of the pyramid is (1/3)(122)(30)=1440​ cubic units.

 Aug 24, 2023
 #2
avatar+129881 
+1

Call the area of the base =  B

Call the area of  each triangular face B / 2

 

So 

 

 B + 4(B / 2)  = 432

 

B + 2B =  432

 

3B = 432

 

B = 144

 

So ...the side of  the base = sqrt (144)  =  12

 

And the area  of  each triangular face  =   B / 2 =  72

 

The slant height of the  pyramid = 

area of triangular face  = (1/2) (slant height) (base side)

72 = (1/2)(slant height)(12)

144 = (slant height) (12)

12 = slant height

 

Height of pyramid =  sqrt [ slant height^2 - (base length / 2)^2 ] = sqrt [ 12^2 - 6^2] =

sqrt (108)  = sqrt (36 * 3)  = 6sqrt3

 

Volume of  pyramid = (1/3) (base area) (height)  = (1/3)(144)(6sqrt 3)  =  288sqrt 3  units^3

 

cool cool cool

 Aug 24, 2023

3 Online Users

avatar
avatar