We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
77
2
avatar

Find the greatest value of t such that \(\frac{t^2 - t -56}{t-8} = \frac{3}{t+5}.\) 

 Jan 15, 2019
 #1
avatar
+1

Solve for t:
(t^2 - t - 56)/(t - 8) = 3/(t + 5)

Cross multiply:
(t + 5) (t^2 - t - 56) = 3 (t - 8)

Expand out terms of the left hand side:
t^3 + 4 t^2 - 61 t - 280 = 3 (t - 8)

Expand out terms of the right hand side:
t^3 + 4 t^2 - 61 t - 280 = 3 t - 24

Subtract 3 t - 24 from both sides:
t^3 + 4 t^2 - 64 t - 256 = 0

The left hand side factors into a product with three terms:
(t - 8) (t + 4) (t + 8) = 0

Split into three equations:
t - 8 = 0 or t + 4 = 0 or t + 8 = 0

Add 8 to both sides:
t = 8 or t + 4 = 0 or t + 8 = 0

Subtract 4 from both sides:
t = 8 or t = -4 or t + 8 = 0

Subtract 8 from both sides:
t = 8 or t = -4 or t = -8

(t^2 - t - 56)/(t - 8) ⇒ (-56 - -8 + (-8)^2)/(-8 - 8) = -1
3/(t + 5) ⇒ 3/(5 - 8) = -1:
So this solution is correct

(t^2 - t - 56)/(t - 8) ⇒ (-56 - -4 + (-4)^2)/(-8 - 4) = 3
3/(t + 5) ⇒ 3/(5 - 4) = 3:
So this solution is correct

(t^2 - t - 56)/(t - 8) ⇒ (-56 - 8 + 8^2)/(8 - 8) = (undefined)
3/(t + 5) ⇒ 3/(5 + 8) = 3/13:
So this solution is incorrect

The solutions are:

t = -4       or       t = -8

 Jan 15, 2019
 #2
avatar+18337 
+1

Factor the right numerator to get:

 

(t-8)(t+7) / (t-8)   = 3/(t+5)           the term (t-8) cancles out on the right but REMEMBER t cannot equal 8 (would make zero denominator)

 

t+7 = 3/ (t+5)

(t+7)*(t+5) = 3

t^2 + 12t + 35 = 3

t^2 + 12t + 32 = 0

(t+8)(t+4) = 0            Shows   t = -8 or  -4     the greatest of which is -4      

 Jan 15, 2019

8 Online Users