+0  
 
0
60
2
avatar

Given that $x = \frac{5}{7}$ is a solution to the equation $56 x^2 + 27 = 89x - 8,$ what is the other value of $x$ that will solve the equation? Express your answer as a common fraction.

Guest Dec 30, 2017
Sort: 

2+0 Answers

 #1
avatar+17711 
+2

56x2 + 27  =  89x - 8

56x2 - 89x + 35  =  0

Since  x = 5/7  is a solution; one factor will be  7x - 5: the other factor will be  8x - 7:

(7x - 5)(8x - 7)  =  0

Either 7x - 5  =  0     or     8x - 7  =  0

                7x  =  5                   8x  =  7

                  x  =  5/7                  x  =  7/8

geno3141  Dec 30, 2017
 #2
avatar+81051 
+2

Thanks, geno....here's one more approach

 

56x^2  +  27  =  89x  - 8   rearrange as

 

56x^2  -  89x  +  35  = 0

 

The sum of the solutions  =  89/56

 

So  letting r be the other solution, this means that

 

5/7  +  r   =  89/56

 

r  =  89/56  -  5/7

 

r  =  89/56  -  40/56

 

r  =  49 / 56   =   7 / 8  

 

 

cool cool cool

CPhill  Dec 30, 2017
edited by CPhill  Dec 30, 2017

14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details