We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Help!

0
380
2

A point  $$(3\sqrt{5},d+3)$$ is $$3d$$ units away from the origin. What is the smallest possible value of $$d$$ ?

Dec 29, 2017

### 2+0 Answers

#1
+1

Using the distance formula...

the distance between  (0, 0)  and  ( 3√5, d+3 )   $$=\,\sqrt{(3\sqrt5-0)^2+(d+3-0)^2} \\~\\ =\,\sqrt{(3\sqrt5)^2+(d+3)^2} \\~\\ =\,\sqrt{45+d^2+6d+9} \\~\\ =\,\sqrt{d^2+6d+54}$$

And they tell us that this equals  3d  ....

$$\sqrt{d^2+6d+54}\,=\,3d \\~\\ d^2+6d+54\,=\,9d^2 \\~\\ 0\,=\,8d^2-6d-54 \\~\\ 0\,=\,8d^2-24d+18d-54 \\~\\ 0\,=\,8d(d-3)+18(d-3) \\~\\ 0\,=\,(d-3)(8d+18) \\~\\ d=3\qquad\text{or}\qquad d=-\frac94$$       Now we just need to solve this equation for  d  .

But... -9/4 is extraneous...so....the smallest possible value of  d  is  3 .

Edited to fix my error....thanks CPhill

Dec 29, 2017
edited by hectictar  Dec 29, 2017
#2
+2

( 3√5, d + 3)  =   (√45 , d + 3 )

So we have that

3d  = √  [  (√ 45)^2  +  (d + 3)^2 ]

3d  =  √ [  45  +  d^2 + 6d + 9 ]

3d  =  √ [ 54 + d^2 + 6d ]       square both sides

9d^2   = d^2 + 6d + 54      rearrange as

8d^2 - 6d - 54  = 0

4d^2  - 3d  -  27  =  0      factor

(4d + 9) (d - 3)  = 0

Setting both factors to 0  and solving for d, we have that

d  = -9/4     or  d  =  3

The first value  gives the  distance  of 3(-9/4)  =  -27/4 units.....but distance is  a positive quantity

So......d  = 3   is the correct value for d  and  3d  =  9 units   Dec 29, 2017
edited by CPhill  Dec 29, 2017