+0  
 
0
136
3
avatar

a5 = 7, a8 = 56a5 = 7, a8 = 56. Find a11a11.

Guest May 7, 2017
Sort: 

3+0 Answers

 #1
avatar
+1

That's impossible, from a5 = 7 we can conclude that a = 1.4.

 

1.4 * 8 =/= 56.

 

If a = 1.4 then a11a11 = 237.16.

Guest May 7, 2017
 #2
avatar+90638 
+2

Hi guest answerer, 

The question is not presented well but I think this is what is meant.

 

\(a_5 = 7, a_8 = 56\qquad Find \;\;a_{11}\)

 

First I want to know if it is an AP or a GP, I assume it is one or the other?

Melody  May 7, 2017
 #3
avatar+18629 
0

a5 = 7, a8 = 56. Find a11

 

\(\begin{array}{|lrcll|} \hline \text{AP:} &\mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x\cdot (\frac{z-y}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) } \\ \text{GP:} &\mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x^{\frac{z-y}{x-y}} \cdot t_y^{\frac{x-z}{x-y}} } \\ \hline \end{array} \)

 

Let

\(\begin{array}{ll} x= 5 & t_x=t_5=7 \\ y=8 & t_y=t_8=56 \\ z=11 & t_z=t_{11}=? \\ \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \text{AP:} &\mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x\cdot (\frac{z-y}{x-y}) +t_y\cdot (\frac{x-z}{x-y}) } \\ &t_{11} &=& 7\cdot (\frac{11-8}{5-8}) + 56\cdot (\frac{5-11}{5-8}) \\ &t_{11} &=& 7\cdot (\frac{3}{-3}) + 56\cdot (\frac{-6}{-3}) \\ &t_{11} &=& 7\cdot (-1) + 56\cdot 2 \\ &t_{11} &=& -7 + 112 \\ & \mathbf{ t_{11} } & \mathbf{=} & \mathbf{105} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline \text{GP:} &\mathbf{ t_z } &\mathbf{=}& \mathbf{ t_x^{\frac{z-y}{x-y}} \cdot t_y^{\frac{x-z}{x-y}} } \\ &t_{11} &=& 7^{\frac{11-8}{5-8}} \cdot 56^{\frac{5-11}{5-8}} \\ &t_{11} &=& 7^{-1} \cdot 56^{2} \\ &t_{11} &=& \frac{3136}{7} \\ & \mathbf{ t_{11} } & \mathbf{=} & \mathbf{448} \\ \hline \end{array} \)

 

laugh

heureka  May 8, 2017

22 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details