We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
71
1
avatar

The graph of an equation \(\sqrt{(x-3)^2 + (y+4)^2} + \sqrt{(x+5)^2 + (y-8)^2} = 20\) is an ellipse. What is the distance between its foci?

 Jan 14, 2019
 #1
avatar+101431 
+1

This is an odd duck, indeed !!!!

 

It is a rotated ellipse   

 

In the form

 

√ [ ( x - a)^2 + ( y - b)^2 ] +    √ [ (x - a ' )^2 + ( y - b ' )^2 ]  = C

 

The foci    are   located at   (a, b)  and ( a ' , b ' )

 

[ Notice how this is very similar  to finding the center of  any conic....!!! ]

 

So....the foci here are  ( 3, -4)  and (-5, 8)

 

So....the distance between these = √ [ ( -5 - 3)^2 + (-4 - 8)^2 ]   = √ [ 64 + 144]  = √ [ 208 ] = 4 √13 units

 

 

cool cool cool

 Jan 14, 2019

10 Online Users