We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
64
1
avatar

For a real number \(x,\) find the minimum value of \(x^4 - 2x^2.\)

 May 20, 2019

Best Answer 

 #1
avatar+8579 
+3

Let    y   =   x4  -  2x2

 

\(y\,=\,x^4-2x^2\\~\\ \frac{dy}{dx}\,=\,\frac{d}{dx}x^4-\frac{d}{dx}2x^2\\~\\ \frac{dy}{dx}\,=\,4x^3-4x\)

 

Now let's find what values of  x  make  \(\frac{dy}{dx}\)  be  0

 

\(0\,=\,4x^3-4x\\~\\ 0\,=\,4x(x^2-1) \)

 

Set each factor equal to zero and solve for  x

 

\(\begin{array} {lcl} 4x=0&\qquad\text{or}\qquad &x^2-1=0\\~\\ x=0&\text{or}&x^2=1\\~\\ &&x=1\quad\text{or}\quad x=-1 \end{array}\)

 

These are the  x  values of all the critical points.

 

We can look at a graph to determine which is the minimum:

https://www.desmos.com/calculator/vvl7egtes1

 

We can see that the minumum occurs when  x  =  1  and when  x  =  -1

 

When  x  =  ±1 ,    x2  =  1

 

And when  x2  =  1 ,

 

y   =   x4  -  2x2   =   (x2)2  -  2x2   =   (1)2 - 2(1)   =   -1

 

So the minumum value of  y  is  -1

 May 20, 2019
 #1
avatar+8579 
+3
Best Answer

Let    y   =   x4  -  2x2

 

\(y\,=\,x^4-2x^2\\~\\ \frac{dy}{dx}\,=\,\frac{d}{dx}x^4-\frac{d}{dx}2x^2\\~\\ \frac{dy}{dx}\,=\,4x^3-4x\)

 

Now let's find what values of  x  make  \(\frac{dy}{dx}\)  be  0

 

\(0\,=\,4x^3-4x\\~\\ 0\,=\,4x(x^2-1) \)

 

Set each factor equal to zero and solve for  x

 

\(\begin{array} {lcl} 4x=0&\qquad\text{or}\qquad &x^2-1=0\\~\\ x=0&\text{or}&x^2=1\\~\\ &&x=1\quad\text{or}\quad x=-1 \end{array}\)

 

These are the  x  values of all the critical points.

 

We can look at a graph to determine which is the minimum:

https://www.desmos.com/calculator/vvl7egtes1

 

We can see that the minumum occurs when  x  =  1  and when  x  =  -1

 

When  x  =  ±1 ,    x2  =  1

 

And when  x2  =  1 ,

 

y   =   x4  -  2x2   =   (x2)2  -  2x2   =   (1)2 - 2(1)   =   -1

 

So the minumum value of  y  is  -1

hectictar May 20, 2019

5 Online Users