+0  
 
-1
174
1
avatar+1195 

Consider the circle defined by the equation \(x^2 +6x +y^2 +8y =0\). Find the sum of the coordinates of the center of the circle.

 Jul 15, 2019

Best Answer 

 #1
avatar+19792 
0

X^2 + 6x       + y^2 + 8y  = 0       'complete the square for 'x'  and for 'y' variable

x^2 + 6x +9     +y^2 + 8y + 16   =  9 + 16

 

(x+3)^2    + ( y+4)^2 = 25      now the equation is of the form   (x-h)^2 + (y-k)^2 = r^2

                                                 where (h,k) is the circle center....   (h,k) = (-3,-4)        

                                                           sum is      -3 + -4 = -7

 Jul 15, 2019
 #1
avatar+19792 
0
Best Answer

X^2 + 6x       + y^2 + 8y  = 0       'complete the square for 'x'  and for 'y' variable

x^2 + 6x +9     +y^2 + 8y + 16   =  9 + 16

 

(x+3)^2    + ( y+4)^2 = 25      now the equation is of the form   (x-h)^2 + (y-k)^2 = r^2

                                                 where (h,k) is the circle center....   (h,k) = (-3,-4)        

                                                           sum is      -3 + -4 = -7

ElectricPavlov Jul 15, 2019

32 Online Users

avatar