We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-1
114
1
avatar+1229 

Consider the circle defined by the equation \(x^2 +6x +y^2 +8y =0\). Find the sum of the coordinates of the center of the circle.

 Jul 15, 2019

Best Answer 

 #1
avatar+19326 
+2

X^2 + 6x       + y^2 + 8y  = 0       'complete the square for 'x'  and for 'y' variable

x^2 + 6x +9     +y^2 + 8y + 16   =  9 + 16

 

(x+3)^2    + ( y+4)^2 = 25      now the equation is of the form   (x-h)^2 + (y-k)^2 = r^2

                                                 where (h,k) is the circle center....   (h,k) = (-3,-4)        

                                                           sum is      -3 + -4 = -7

 Jul 15, 2019
 #1
avatar+19326 
+2
Best Answer

X^2 + 6x       + y^2 + 8y  = 0       'complete the square for 'x'  and for 'y' variable

x^2 + 6x +9     +y^2 + 8y + 16   =  9 + 16

 

(x+3)^2    + ( y+4)^2 = 25      now the equation is of the form   (x-h)^2 + (y-k)^2 = r^2

                                                 where (h,k) is the circle center....   (h,k) = (-3,-4)        

                                                           sum is      -3 + -4 = -7

ElectricPavlov Jul 15, 2019

27 Online Users