Suppose f(x)= 9/5x -4. Does f have an inverse? If so, find f^{-1}(20). If not, enter "undef".
f(x) = \(\frac95\)x - 4
Instead of " f(x) " , let's say " y ".
y = \(\frac95\)x - 4
Add 4 to both sides of the equation.
y + 4 = \(\frac95\)x
Multiply both sides of the equation by \(\frac59\) .
\(\frac59\)(y + 4) = \(\frac59\) * \(\frac95\)x
\(\frac59\)y + \(\frac{20}9\) = x
x = \(\frac59\)y + \(\frac{20}9\)
Now, to get the inverse function, swap x and y .
y = \(\frac59\)x + \(\frac{20}9\) This is the inverse function.
f-1(x) = \(\frac59\)x + \(\frac{20}9\) To find f-1(20) , plug in 20 for x .
f-1(20) = \(\frac59\)(20) + \(\frac{20}9\) = \(\frac{100}9\) + \(\frac{20}9\) = \(\frac{120}9\) = \(\frac{40}3\)
f(x) = \(\frac95\)x - 4
Instead of " f(x) " , let's say " y ".
y = \(\frac95\)x - 4
Add 4 to both sides of the equation.
y + 4 = \(\frac95\)x
Multiply both sides of the equation by \(\frac59\) .
\(\frac59\)(y + 4) = \(\frac59\) * \(\frac95\)x
\(\frac59\)y + \(\frac{20}9\) = x
x = \(\frac59\)y + \(\frac{20}9\)
Now, to get the inverse function, swap x and y .
y = \(\frac59\)x + \(\frac{20}9\) This is the inverse function.
f-1(x) = \(\frac59\)x + \(\frac{20}9\) To find f-1(20) , plug in 20 for x .
f-1(20) = \(\frac59\)(20) + \(\frac{20}9\) = \(\frac{100}9\) + \(\frac{20}9\) = \(\frac{120}9\) = \(\frac{40}3\)