+0  
 
0
215
1
avatar+644 

Suppose f(x)= 9/5x -4. Does f have an inverse? If so, find f^{-1}(20). If not, enter "undef".

waffles  Oct 24, 2017

Best Answer 

 #1
avatar+7324 
+2

f(x)  =  \(\frac95\)x - 4

                                    Instead of  " f(x) " , let's say  " y ".

y  =  \(\frac95\)x - 4

                                    Add  4  to both sides of the equation.

y + 4  =  \(\frac95\)x

                                    Multiply both sides of the equation by  \(\frac59\) .

\(\frac59\)(y + 4)  =  \(\frac59\) * \(\frac95\)x

 

\(\frac59\)y + \(\frac{20}9\)  =  x

 

x  =  \(\frac59\)y + \(\frac{20}9\)

 

Now, to get the inverse function, swap  x  and  y .

 

y  =  \(\frac59\)x + \(\frac{20}9\)          This is the inverse function.

 

f-1(x)  =  \(\frac59\)x + \(\frac{20}9\)          To find f-1(20) , plug in  20  for  x .

 

f-1(20)  =  \(\frac59\)(20) + \(\frac{20}9\)   =   \(\frac{100}9\) + \(\frac{20}9\)   =   \(\frac{120}9\)   =   \(\frac{40}3\)

hectictar  Oct 25, 2017
 #1
avatar+7324 
+2
Best Answer

f(x)  =  \(\frac95\)x - 4

                                    Instead of  " f(x) " , let's say  " y ".

y  =  \(\frac95\)x - 4

                                    Add  4  to both sides of the equation.

y + 4  =  \(\frac95\)x

                                    Multiply both sides of the equation by  \(\frac59\) .

\(\frac59\)(y + 4)  =  \(\frac59\) * \(\frac95\)x

 

\(\frac59\)y + \(\frac{20}9\)  =  x

 

x  =  \(\frac59\)y + \(\frac{20}9\)

 

Now, to get the inverse function, swap  x  and  y .

 

y  =  \(\frac59\)x + \(\frac{20}9\)          This is the inverse function.

 

f-1(x)  =  \(\frac59\)x + \(\frac{20}9\)          To find f-1(20) , plug in  20  for  x .

 

f-1(20)  =  \(\frac59\)(20) + \(\frac{20}9\)   =   \(\frac{100}9\) + \(\frac{20}9\)   =   \(\frac{120}9\)   =   \(\frac{40}3\)

hectictar  Oct 25, 2017

6 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.