We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
49
1
avatar

Find \(q(x)\) if the graph of \(\frac{4x-x^3}{q(x)}\) has a hole at \(x=-2\), a vertical asymptote at \(x=1\), no horizontal asymptote, and \(q(3) = -30\).

 May 6, 2019
 #1
avatar+101872 
+1

4x - x^3            x ( 4 - x^2)            x ( 2 - x) ( 2 +x)

______  =       ___________ =    _____________

  q(x)                    q(x)                       q(x)

 

If we have a  "hole" at x = -2, then q(x) must have a  factor  of ( x + 2)

If we have a vertical asymptote at x = 1, then (x - 1)  must also be a factor

If we have no horizontal asymptote, the q(x) must be a second degree polynomial - the rational fuction has a s;ant asymptote

And  since   q(3) = -30....then we have that

 

-30 = a(3 + 2) (3 - 1)

-30  =a (5)(2)

-30 = 10a

a = -3

 

So....q(x)  = -3(x + 2)(x - 1) =  -3(x^2 + x - 2)  =  -3x^2 - 3x + 6

 

Here's a graph :  https://www.desmos.com/calculator/dz5hnv1yoa

 

 

cool  cool  cool

 May 6, 2019

19 Online Users

avatar
avatar