We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
24
1
avatar

If one root of (a^2 + 9)x^2 + 13x + 6a = 0 is equal to the reciprocal of the other root, then find a.

 Dec 2, 2019
 #1
avatar+23575 
+2

If one root of (a^2 + 9)x^2 + 13x + 6a = 0 is equal to the reciprocal of the other root, then find a.

 

\(\begin{array}{|rcll|} \hline (a^2 + 9)x^2 + 13x + 6a &=& 0 \quad & | \quad : (a^2 + 9) \\\\ x^2 + \dfrac{13}{a^2 + 9}x + \underbrace{\dfrac{6a}{a^2 + 9}}_{=r_1r_2} &=& 0 \quad & | \quad \text{vieta} \\\\ r_1r_2 &=& \dfrac{6a}{a^2 + 9} \quad |\quad r_2 = \dfrac{1}{r_1} \\ r_1\dfrac{1}{r_1} &=& \dfrac{6a}{a^2 + 9} \\ 1 &=& \dfrac{6a}{a^2 + 9} \\ a^2 + 9 &=& 6a \\ a^2-6a + 9 &=& 0 \\\\ a &=& \dfrac{6 \pm \sqrt{6^2-4(9)} } {2} \\ a &=& \dfrac{6 \pm \sqrt{0}} {2} \\ a &=& \dfrac{6}{2} \\ \mathbf{a} &=& \mathbf{3} \\ \hline \end{array} \)

 

laugh

 Dec 2, 2019

17 Online Users

avatar