We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
214
3
avatar

Let \(f(x)\) be an odd function defined for all real numbers \(x,\) and let \(g(x) = f(x + 3) - 5.\) You are told that the graph of \(y = g(x)\) passes through the point \((2,-2).\) Then the graph of \(y = g(x)\) must also pass through two other points \((a,b)\) and \((c,d).\) Find \((a,b)\) and \((c,d).\)

 May 8, 2019
 #1
avatar+8810 
+3

Since  f(x)  is an odd function defined for all real numbers  x ,

 

f( -x )  =  - f(x)

___

for all real numbers  x .  And  0  is a real number, so....

f( -0 )  =  - f(0)

 

 

 
f(0)  =  - f(0)

 

 

Here we can notice that the only way for  a = -a  to be true is if  a = 0 .

Still we can add  f(0)  to both sides of the equation.

2f(0)  =  0

 

 

Divide both sides of the equation by  2
f(0)  =  0

 

Now let's make this match the form  f(x + 3) - 5 . Rewrite  0  as  -3 + 3
f( -3 + 3 )  =  0

 

 

Subtract  5  from both sides of the equation.
f( -3 + 3 ) - 5  =  -5

 

Substitute  g( - 3 )  in for  f(-3  + 3) - 5
g( -3 )  =  -5

 

 

 

Now we can see that  y  =  g( x )  passes through the point  (-3, -5) .

This makes sense because the graph of  g(x)  is shifted  3 to the left and  5  down from  f(x) .

 

Since  y  =  g(x)  passes through  (2, -2) ,

g( 2 )  =  -2

 

 

Substitute  f(2 + 3) - 5  in for  g( 2 )
f( 2 + 3 ) - 5  =  -2

 

 
f( 5 ) - 5  =  -2

 

 

Add  5  to both sides.
f( 5 )  =  3

 

 

Notice that  (5, 3)  is shifted  3  to the right and  5  up from  (2, -2).

Since  f( -x )  =  - f( x ) ,  f( -5 )  =  - f(5)  =  -3

f( -5 )  =  - 3

 

 

Rewrite  -5  as  -8 + 3
f( -8 + 3 )  =  -3

 

Subtract  5  from both sides of the equation.
f( -8 + 3 ) - 5  =  -8

 

 

Substitute  g( -8 )  in for  f( -8 + 3 ) - 5
g( -8 )  =  -8

 

And notice  (-8, -8)  is shifted  3  to the left and  5  down from  (-5, -3) .

 

Now we can see that  y  =  g( x )  passes through the point  (-8, -8) .

 May 8, 2019
 #2
avatar+104899 
+2

Very nice, hectictar.......these always confuse me....!!!!!

 

 

 

cool cool cool

CPhill  May 9, 2019
 #3
avatar+8810 
+2

Honestly, they confuse me too, haha!

hectictar  May 9, 2019

30 Online Users

avatar
avatar
avatar