+0  
 
0
28
1
avatar

In the coordinate plane, let F = (5,0). Let P be a point, and let Q be the projection of the point P onto the line x=16/5. The point traces a curve in the plane, so that \(\frac{PF}{PQ} = \frac{5}{4}\) for all points on the curve. Find the equation of this curve.(Enter it in standard form.) 

 Jan 28, 2019
 #1
avatar+21191 
+6

In the coordinate plane, let F = (5,0).

Let P be a point, and let Q be the projection of the point P onto the line \(x=\dfrac{16}{5}\).

The point traces a curve in the plane, so that  \(\dfrac{PF}{PQ} = \dfrac{5}{4}\) for all points on the curve.

Find the equation of this curve.

(Enter it in standard form.) 

 

The equation of this curve is a hyperbola : \(\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1\)

The focus is the Point \(F = (5,0) =(c,0)\)  so \(c = 5 \).

 

\(\mathbf{a=\ ?}\)

\(\begin{array}{|rcll|} \hline \dfrac{PF}{PQ} = \dfrac{c}{a} &=& \dfrac{5}{4} \\\\ \dfrac{c}{a} &=& \dfrac{5}{4} \quad | \quad c = 5 \\\\ \dfrac{5}{a} &=& \dfrac{5}{4} \\\\ \dfrac{1}{a} &=& \dfrac{1}{4} \\\\ \mathbf{a} &\mathbf{=}& \mathbf{4} \\ \hline \end{array} \)

 

\(\mathbf{b=\ ?}\)

\(\begin{array}{|rcll|} \hline b^2 &=& c^2-a^2 \quad | \quad c = 5,~ a= 4 \\ b^2 &=& 5^2-4^2 \\ b^2 &=&25-16 \\ b^2 &=& 9 \\ \mathbf{b} &\mathbf{=}& \mathbf{3} \\ \hline \end{array}\)


check:
\(\begin{array}{rcl} \dfrac{16}{5} &=& \dfrac{a^2}{c} \\\\ &=& \dfrac{4^2}{5} \\\\ &=& \dfrac{16}{5}\ \checkmark \\ \end{array}\)

 

\(\text{Let $ P=(x_p,y_p) $ }\)

 

The equation of this curve is : \(\mathbf{\dfrac{x_p^2}{4^2} - \dfrac{y_p^2}{3^2} = 1} \)

 

 

laugh

 Jan 28, 2019
edited by heureka  Jan 28, 2019

13 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.