We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
73
2
avatar+1040 

Given that \(xy = \dfrac32\) and both x and y are nonnegative real numbers, find the minimum value of \(10x + \dfrac{3y}5.\)

 Jul 29, 2019
 #1
avatar+5788 
+2

\(y = \dfrac{3}{2x}\\ v=10x+\dfrac 3 5 \cdot \dfrac{3}{2x} = 10x+\dfrac{9}{10x}\\ \dfrac{dv}{dx} = 10 -\dfrac{9}{10x^2}\\ \dfrac{dv}{dx}=0 \Rightarrow 10=\dfrac{9}{10x^2}\\ \dfrac{100}{9}=\dfrac{1}{x^2}\\ x^2 = \dfrac{9}{100}\\ x = \dfrac{3}{10}\)

 

\(\text{We need to confirm this critical point is a minimum}\\ \dfrac{d^2v}{dx^2} = \dfrac{9}{5x^3}\\ \text{$\left. \dfrac{9}{5x^3}\right |_{x=\frac{3}{10}} > 0$ so this is in fact a minimum}\)

 

\(x = \dfrac{3}{10} \Rightarrow \\ y = \dfrac{3}{2\cdot \frac{3}{10}} = 5\\ 10\left(\dfrac{3}{10}\right) + \dfrac{3(5)}{5} = 3+3= 6\)

 

\(\text{The minimum value of $10x+\dfrac{3y}{5},~x,y >0,~xy=\dfrac 3 2$ is 6}\)

.
 Jul 29, 2019
 #2
avatar+1040 
+1

Thanks Rom

 Jul 29, 2019

7 Online Users