+0  
 
0
195
1
avatar

Points A and  B are on side YZ of rectangle WXYZ such that WA  and WB trisect ZWX . If  BY=3 and AZ=6, then what is the area of rectangle WXYZ?

 Jun 18, 2022
edited by Guest  Jun 18, 2022
 #1
avatar+1768 
0

 

Since ZWX is trisected, then ∠AWZ=30 and ∠BWZ=60. So triangle AZW is a 30-60-90 right triangle. So WZ=AZ∗3​=83​. And triangle BZW is a 30 -60-90 right triangle. BZ = WZ* 3​=83​∗3​=24. So [WXYZ]=[WZ∗(BZ+BY)]=[8(​3)∗(24+3)]=216(​3)​ units$^2$.

 Nov 23, 2023

1 Online Users

avatar