We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
79
4
avatar+9 

A function f has a horizontal asymptote of y=-4,  a vertical asymptote of x=3 and an x-intercept at (1,0). 

Part (a): Let f be of the form \($$f(x) = \frac{ax+b}{x+c}.$$\)
Find an expression for f(x).

Part (b): Let f be of the form \($$f(x) = \frac{rx+s}{2x+t}.$$\)
Find an expression for f(x).

 Apr 14, 2019
 #1
avatar+101870 
+2

a)  If the vertical asymptote  = 3

Then   this value of x makes the denominator = 0

So......3 + c  = 0 ⇒  c = -3

If we have a horizontal asymptote of - 4...this implies that (ax/1x) = (a / 1) =  - 4  ⇒  a = -4

And if the x intercept =   then   a(1) + b = 0  ...so...

-4(1) + b = 0

-4 + b = 0

b = 4

 

So   (a, b , c ) =  ( -4, 4, -3)

 

cool cool cool

 Apr 14, 2019
 #2
avatar+101870 
+2

(b)   Similarly

2(3) + t = 0

6 + t = 0

t = - 6

 

And

(r) / (2) = -4

r = 8

 

And if we have (1, 0)   then

r(1) + s = 0

8(1) + s = 0

s = -8

 

So    (r, s, t )  =  ( 8, -8, -6)

 

 

cool cool cool

 Apr 14, 2019
 #3
avatar+6 
+1

THANK YOU!!!!!!

 Apr 15, 2019
 #4
avatar
0

Also isn't it r=-8 in part b?

 Apr 16, 2019

13 Online Users