+0  
 
0
1
1
avatar+44 

Let $x$ and $y$ be real numbers. If $x$ and $y$ satisfy
x^2 + y^2 = 4x - 8y + 17x - 5y + 25,
then find the largest possible value of $x.$ Give your answer in exact form using radicals, simplified as far as possible.

 Jun 8, 2024

Best Answer 

 #1
avatar+759 
+1

Let's first move all terms to one side of the equation and combine all like terms.

We get

\(x^2 - 21x + y^2 + 13y = 25\)

 

Now, let's complete the square for x and y on the left side the equation. 

\(x^2 - 21x + 441/4 + y^2 + 13y + 169/4 = 25 + 441/4 + 169/4\)

\((x - 21/2)^2 + (y + 13/2)^2 = 355 / 2\)

 

This is the equation for a circle. 

 

According to the circle rules, this circle has a center at \((21/2 , -13/2)\)and radius \(\sqrt{355 / 2}\)

 

The largest possible value is basically the radius added onto the x coordinate of the center. 

 

We have \(x = (21/2) + \sqrt{355 / 2}\)

 

Thanks! :)

 Jun 8, 2024
 #1
avatar+759 
+1
Best Answer

Let's first move all terms to one side of the equation and combine all like terms.

We get

\(x^2 - 21x + y^2 + 13y = 25\)

 

Now, let's complete the square for x and y on the left side the equation. 

\(x^2 - 21x + 441/4 + y^2 + 13y + 169/4 = 25 + 441/4 + 169/4\)

\((x - 21/2)^2 + (y + 13/2)^2 = 355 / 2\)

 

This is the equation for a circle. 

 

According to the circle rules, this circle has a center at \((21/2 , -13/2)\)and radius \(\sqrt{355 / 2}\)

 

The largest possible value is basically the radius added onto the x coordinate of the center. 

 

We have \(x = (21/2) + \sqrt{355 / 2}\)

 

Thanks! :)

NotThatSmart Jun 8, 2024

5 Online Users

avatar
avatar
avatar