hey guys, i have a quesiton on how to add these binomials
99c3 + 99c5 + 99c7 + ... + 99c97
im decently sure there is a formula for this, but i cannot remember it. help? ty
99C0+99C99=1+1=2
99C1+99C98=99+99 = 198
99C2+99C97=4851+4851=9792
If I add all those together I get 9900
So the sum is 2^99 - 9900
I think it is anyway.
add these binomials
\(^{99}C_3 +~ ^{99}C_5 +~ ^{99}C_7 + \ldots + ~ ^{99}C_{97}\)
\(\small{ \begin{array}{|rcll|} \hline ^{99}C_0+~^{99}C_1+~^{99}C_2+~^{99}C_3 + \ldots + ~^{99}C_{97}+~^{99}C_{98}+~^{99}C_{99} &=& 2^{99} \\\\ ~^{99}C_1+~^{99}C_3+~^{99}C_5 + \ldots + ~^{99}C_{97}+~^{99}C_{99} &=& \dfrac{2^{99}}{2} \\\\ ^{99}C_3 +~ ^{99}C_5 +~ ^{99}C_7 + \ldots + ~ ^{99}C_{97} &=& \dfrac{2^{99}}{2} -~^{99}C_1-~^{99}C_{99} \\\\ ^{99}C_3 +~ ^{99}C_5 +~ ^{99}C_7 + \ldots + ~ ^{99}C_{97} &=& 2^{98} -99-1 \\\\ \mathbf{ ^{99}C_3 +~ ^{99}C_5 +~ ^{99}C_7 + \ldots + ~ ^{99}C_{97} } &=& \mathbf{2^{98} -100 } \\ \hline \end{array} }\)